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When movements are perturbed in adaptation tasks, humans and other animals show incomplete compensation, tolerating small but
sustained residual errors that persist despite repeated trials. State-space models explain this residual asymptotic error as interplay
between learning from error and reversion to baseline, a form of forgetting. Previous work using zero-error-clamp trials has shown that
reversion to baseline is not obligatory and can be overcome by manipulating feedback. We posited that novel error-clamp trials, in which
feedback is constrained but has nonzero error and variance, might serve as a contextual cue for recruitment of other learning mechanisms
that would then close the residual error. When error clamps were nonzero and had zero variance, human subjects changed their learning
policy, using exploration in response to the residual error, despite their willingness to sustain such an error during the training block. In
contrast, when the distribution of feedback in clamp trials was naturalistic, with persistent mean error but also with variance, a state-
space model accounted for behavior in clamps, even in the absence of task success. Therefore, when the distribution of errors matched
those during training, state-space models captured behavior during both adaptation and error-clamp trials because error-based learning
dominated; when the distribution of feedback was altered, other forms of learning were triggered that did not follow the state-space model
dynamics exhibited during training. The residual error during adaptation appears attributable to an error-dependent learning process
that has the property of reversion toward baseline and that can suppress other forms of learning.
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Introduction
When a motor command is produced but the result is other than
expected, the brain partially compensates for the error by altering
the commands on the next attempt (Shadmehr and Mussa-Ivaldi,
1994; Krakauer et al., 2000; Thoroughman and Shadmehr, 2000).
As a result, when a perturbation is presented repeatedly, the
changes in motor commands accumulate, mostly compensating
for the perturbation. A puzzling feature of this process of adap-
tation is that the compensation is often incomplete: after many
trials of training, subjects still exhibit small, sustained errors in
their performance (Krakauer et al., 2000, 2006; Tseng et al., 2007;
Rabe et al., 2009; Galea et al., 2011; Taylor et al., 2014). It appears

that, even with extended training, there are persistent steady-state
errors that the brain does not correct. Why should this be?

State-space models of learning provide a mathematical de-
scription of adaptation that can account for these persistent re-
sidual errors (Smith et al., 2006; Kording et al., 2007). In these
models, it is assumed that the brain learns to estimate the state of
the environment, updating its estimate after each trial based on
the experienced error. In addition, the estimated state partially
reverts toward baseline after each trial. That is, error-dependent
learning is balanced with trial-to-trial forgetting (or reversion
toward a baseline state). These two opposing effects eventually
reach equilibrium in which learning from error balances rever-
sion toward baseline. This trial-to-trial reversion is thought to be
directly observable by using trials in which errors are constrained
to zero, called error-clamp trials (Scheidt et al., 2000; Smith et al.,
2006; Criscimagna-Hemminger and Shadmehr, 2008; Pekny et
al., 2011; Ingram et al., 2013; Kitago et al., 2013).

However, recent work has revealed that reversion to baseline
in adaptation paradigms is not inevitable. Close inspection of
behavior in error-clamp trials reveals that subjects persist in their
asymptotic actions over several trials before beginning to revert
to baseline (Vaswani and Shadmehr, 2013). Reversion to baseline
in error-clamp trials can be prevented altogether by reinforcing
an action performed at asymptote or by imposing variable errors
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in clamp trials (Shmuelof et al., 2012; Vaswani and Shadmehr,
2013). If reversion to baseline is not obligatory, why is it that
subjects cannot close their residual error?

We suggested previously that the attenuation of reversion
to baseline reflected the engagement of an alternative rein-
forcement-based learning process, which is usually mostly sup-
pressed in regular adaptation paradigms (Shmuelof et al., 2012).
This alternative process deviates from the dynamics of the state-
space model and, in particular, may not be susceptible to rever-
sion to baseline. Here, we asked whether such an alternative
learning process could also be used to overcome the persistent
residual errors seen during adaptation. We used a novel kind of
error clamp that imposed constant, small, nonzero errors. We
posited that the ensuing decorrelation of visual feedback from a
subjects’ actions might create sufficient contextual change (Vas-
wani and Shadmehr, 2013) to provoke subjects to break free from
error-based learning and respond to the residual error with an-
other kind of learning.

Materials and Methods
Participants. Fifty-seven healthy, right-handed subjects (34 females, aged
20 – 41 years) participated in the experiments. All subjects were naive to
the purpose of the experiment and were paid to participate. The experi-
ments took place at Columbia University, and the work was approved by
the Columbia University Institutional Review Board.

Paradigm. Subjects sat at a table with their right hand supported on a
lightweight sled. Air jets in the sled generated air cushions that facilitated
frictionless planar movements. Subjects could not see their hand but
were provided with continuous visual feedback throughout the experi-
ment. Custom routines, courtesy of Dr. R. L. Sainburg (Pennsylvania
State University, State College, PA), controlled the real-time visual
display.

Subjects performed movements with their right arm from a starting
circle to a circular target (0.5 cm diameter) positioned 8 cm away at 135°
(Fig. 1A). Hand and arm positions were recorded at 120 Hz using a Flock
of Birds magnetic system (Ascension Technology). If the cursor hit the
target, a pleasant tone was played. Subjects also received numerical feed-
back indicating their speed and were told that this score indicated solely
their speed. Subjects were told that the object of the task was to hit the
target while maintaining a quick speed; they were not required to stop at
the target. Subjects took 118 ms to reach the target extent, on average.

Our primary concern was to expose the subjects to a visuomotor per-
turbation and test whether behavior after adaptation exhibited steady-
state errors. To understand the reason for these errors, we then probed
how subjects learned from error by following the perturbation with
error-clamp trials in which we decoupled visual feedback from reach
angles, controlling for error on each trial.

All subjects first completed 40 baseline trials, in which cursor position
was veridical, followed by a short break. They then completed 20 addi-
tional baseline trials, followed by 100 trials of training in which the cursor
was rotated 30° counterclockwise. Each group then completed a group-
specific pattern of clamp trials in which we controlled the trial-to-trial
distribution of visual feedback, followed by 40 trials of washout in which
veridical feedback was provided (Fig. 1B).

Subjects were told that, during the experiment, they would find
themselves making errors and that they should not think about what
was causing them but continue to aim for the target. Subjects were
told explicitly that, if they notice anything weird, they should tell the
experimenter.

We tested six groups of subjects (Fig. 1C). In the first group (no-
clamp), subjects received 100 additional perturbation trials without an
error-clamp block. In the next five conditions, subjects were presented
with error-clamp trials, in which cursor position was decoupled from
hand position, but we modulated the distribution of cursor feedback. We
use the notation N(x, y) to indicate that subjects received visual feedback
drawn from a normal distribution with mean x and variance y. The N(0,
0) group (n � 7) received traditional error-clamp trials, in which the

cursor moved toward the center of the target on every trial. That is, the
cursor feedback had a distribution with mean zero and variance zero. In
pilot experiments, after 100 trials of training in a 30° clockwise rotation,
subjects were receiving feedback with a distribution with mean � SD of
�2.7° � 5° (variance, 25 deg 2). Accordingly, the N(�2.7, 25) group (n �
10) received cursor feedback drawn pseudorandomly from this distribu-
tion. These parameters were similar to the mean and variance of the
distribution of visual feedback these subjects received at the end of the
training block. To examine the role of reward, we considered a condition
in which the distribution of feedback resembled that during training but
without any successful trials. In the N(�2.7, 25) no-reward group (n �
8), any trials in which the cursor would end in the target were resampled
pseudorandomly from the distribution. That is, in this condition, sub-
jects never hit the target and never received the pleasant tone but still
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Figure 1. Paradigm. A, Subjects made 8 cm reaching movements to a target at 135°. Visual
feedback was perturbed by a rotation (left) or clamp (middle and right). In clamp trials, the
cursor (dashed lines) moved directly to the target (middle) or to an endpoint, independent of
the reach angle (solid lines). B, Subjects completed 60 trials of baseline training with veridical
visual feedback, followed by 100 trials of a 30° visuomotor rotation. Then, subjects were ex-
posed to 100 clamp trials, in which visual feedback was presented along a line at a fixed angle in
each trial. C, Each group received a different clamp angle (�) distribution. We denote these
distributions by N(x, y), indicating that the feedback was normally distributed with mean x and
variance y. A control group (no-clamp) received additional rotation trials instead of clamps. One
group was always clamped to the target [N(0, 0)]. Three groups received feedback with a
distribution that was similar in mean and/or variance to their movements during the training
period [N(0, 25), N(�2.7, 0), N(�2.7, 25)]. A last group received feedback with similar mean
and variance, but trajectories to the target (��� � 2.4°) resampled so no trials were rewarded
(N(�2.7, 25), no-reward group). In each of these groups, the distribution of feedback was
pseudorandom.
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received feedback about the speed of their movements. To dissociate the
roles of mean and variance of the feedback distribution on behavior, in
two groups, we used a distribution in which one of these parameters was
similar to that of subjects at the end of training, but the other changed.
The N(0, 25) group (n � 10) received visual feedback with a distribution
with mean zero and variance 25 deg 2, a variance similar to the variance of
subjects’ movements at the end of the training block but with a different
mean. The N(�2.7, 0) group (n � 15) received feedback with a bias
(�2.7°) but no variance. In each group that received error-clamp trials,
all subjects received the same sequence of feedback.

State-space model. We fit a two-state model to the behavior of subjects
during the training block and assessed to what degree the model fit could
predict behavior during the clamp and washout blocks of the experiment
(Smith et al., 2006). In this model, the perturbation was estimated via two
internal states: (1) one of which learns quickly from prediction error but
also reverts to baseline quickly, called the “fast” state; and (2) the other of
which learns slowly and reverts to baseline slowly, termed the “slow”
state. On each trial, the state estimate x (n ) is updated from the error e (n )

as follows:

x (n ) � xf
(n) � xs

(n), (1)

xf
(n � 1) � Af xf

(n) � Bf e (n ),

xs
(n � 1) � Asxs

(n) � Bse
(n ),

where xf and xs are the fast and slow states, respectively. The learning
rates are 0 � Bs � Bf � 1, and the retention rates are 0 � Af � As � 1. For
each subject, we fit the learning and retention rates of the model to the
behavior during the baseline and training block, minimizing the least
squared error between the data and model output. Then we fixed the
parameters and, using the feedback provided in the clamp block, pre-
dicted the reach angles during the clamp and washout blocks for each
subject. To evaluate the ability of the model to accurately predict behav-
ior, we computed the variance accounted for (VAF) by the model in the
fit and prediction periods, as well as the square root of the mean squared
error (RMSE) of the model predictions. We also computed the predicted
trial-to-trial retention at the end of training. To do so, we calculated the
retention in the state estimate at the end of training if a trial without error
were presented: (Afxf

(n) � Asxs
(n))/x (n ).

To assess whether noise could account for some of our observations,
we also simulated the behavior of subjects using a state-space model with
noise:

xf
(n � 1) � Af xf

(n) � Bfe
(n ) � rf

(n), (2)

xs
(n � 1) � Asxs

(n) � Bse
(n ) � rs

(n),

where rf
(n) and rs

(n) are state noise applied to the learning process. In our
simulations, rf

(n) and rs
(n) were independent normally distributed random

variables with mean of 0° and variance of 5 deg 2. The learning and
retention rates were set to the average parameters from the two-state
model fit to the behavior during the baseline and training blocks for each
subject: Af � 0.920, Bf � 0.131, As � 0.969, and Bs � 0.060.

Data analysis. Data were analyzed offline using custom routines writ-
ten in MATLAB (R2013a; MathWorks). The angle of the hand at the
target extent, relative to the target direction, was used to assess direction
of the movement. Movements in the wrong direction (�120° from the
goal direction) were eliminated (0.04% of trials). All measures are re-
ported as mean � SEM.

Statistical analyses were conducted using MATLAB or SPSS (version
21; IBM). We used Student’s t test (paired when appropriate) to compare
performance. Because the VAF by the state-space model is bounded and
not normally distributed, Mann–Whitney U and Kruskal–Wallis tests
was used to compare the VAF across groups.

Exploration. Previous work has shown that, when subjects receive lim-
ited feedback about their movements, substantial trial-to-trial variability
in behavior can be observed (Izawa and Shadmehr, 2011). Recent work
has further suggested that subjects can make use of variability to arrive at
a successful solution when a perturbation is applied (Wu et al., 2014). We

sought to identify exploratory behavior in clamp trials, in which subjects
might increase their trial-to-trial variability in the face of altered feed-
back. Because subjects differ in their behavior, we compared the variabil-
ity of each subject’s behavior in clamp trials with the variability of their
behavior in the training block. We first calculated the SD of the hand
direction in an 11 trial (current � 5 trials) sliding window across the
experiment to find the variability of behavior around each trial. By find-
ing the mean and SD of this distribution in the last half of the training
block, we could evaluate the typical variability for each subject. Then, we
identified windows in the clamp block about which subjects had a high
variability, �2 SDs from the mean for that subject. For a given trial, if
�80% of the 15 nearby trials (current � 7 trials) were considered to have
a high variability, we labeled the point as representative of exploration.
This second criteria was used to prevent a single, potentially erroneous
movement from causing several trials to be labeled as exploratory, by
requiring a sustained increase in the trial-to-trial variability in behavior.

Results
We asked six groups of volunteers to make 8 cm reaching move-
ments. In the baseline block, the motion of the cursor was an
identity transformation of the motion of the hand, and the par-
ticipants reached to place the cursor in the target. In the training
block, the motion of the cursor (Fig. 1C, red dots) was a �30°
(counterclockwise) rotation of the motion of the hand (Fig. 1C,
blue dots). Participants learned to alter their reach angle by an
average of 25.5 � 0.5° (last 20 trials of the training block com-
pared with the last 20 trials of the baseline block, across all
groups), resulting in 85% compensation for the perturbation,
producing a residual error of �6.3 � 0.5°, a value significantly
different from zero (t test, t(56) � �12.0, p � 4E-17). However,
the target radius was only 1.8°. Why did participants exhibit a
residual error, on average missing the target?

A state-space model of adaptation provides one account of
this behavior (Smith et al., 2006; Kording et al., 2007). According
to this model, in the training block, the subject notes that, as they
generate a motor command, the cursor does not go where they
had expected. The difference between the expected sensory con-
sequence and the observed consequence is a prediction error,
inducing learning in a forward model relating motor commands
to their expected sensory consequences. State-space models as-
sume that this internal model is parameterized via a set of states
and that these states learn from prediction error. Critically, these
states also partially revert toward their baseline state after each
trial. Consequently, subjects will converge on a nonzero error at
the end of training when incomplete retention from one trial to
the next, pulling behavior toward the baseline, balances new
learning from the residual error. A two-state model fitted to the
data for all subjects in the baseline and training block estimated
that trial-to-trial retention at the end of training was 0.95 � 0.01.
That is, the model predicted that, without errors, motor output
will decay at the rate of �5% per trial at the end of training. We
used zero-error-clamp trials (trials in which motion of the cursor
always hit the target, regardless of subjects’ actions) to quantita-
tively test this prediction. We then used nonzero-error clamps, in
which the errors were drawn from various distributions similar to
subjects’ behavior at asymptote. We hypothesized that presenting
errors that were decorrelated from subjects’ actions might trigger
subjects to abandon their steady-state behavior (Vaswani and
Shadmehr, 2013) and lead them to overcome this residual error.

Persistent residual error after prolonged training was
accounted for by a state-space model
In the no-clamp group, the visuomotor rotation was maintained
for 200 trials. With this group, we wanted to answer two ques-
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tions: (1) would performance exhibit re-
sidual error even with this extended
amount of training; and (2) if so, would
the state-space model from the first 100
training trials predict performance in the
second 100 training trials?

Performance of a typical subject is
shown in the left column of Figure 2A, and
the group data are summarized in the
right column of the same figure. With ex-
tended training, the reach angles changed,
resulting in partial compensation for the
perturbation and placement of the cursor
near the target. Indeed, by the end of the
extended training, the cursor position ex-
hibited a nonzero error (last 20 trials, er-
ror of �4.2 � 0.8°, t(7) � �5.2, p �
0.001). We fit a state-space model to each
participant’s data in the baseline and first
100 training trials and then fixed the
model parameters and used it to predict
performance in the remaining 100 train-
ing trials, as well as in the washout trials
(Fig. 2A, black dots). The model fit the
baseline and training data well, account-
ing for 87 � 2% of the variance, with an
RMSE of 4.9 � 0.3°. The model estimated
that trial-to-trial retention after 100 trials
of training was 0.95 � 0.02. Overall, the
model predicted behavior in the extended
training and washout block of the experi-
ment quite accurately (VAF, 86 � 2%;
RMSE, 4.5 � 0.2°).

Therefore, in extended training, par-
ticipants continued to exhibit significant
residual errors, and these errors could be
captured by a model in which there was a
small but significant trial-to-trial rever-
sion toward baseline.

Reversion to baseline in zero-error-
clamp trials was incompletely predicted
by a state-space model
If the residual error is attributable to trial-
to-trial reversion to baseline, then in the
absence of error the reach angles should
decay toward the baseline precisely as pre-
dicted by the model. To test for this, we
presented a second group of subjects with
traditional error-clamp trials in which, re-
gardless of the reach angle, the cursor
moved toward the center of the target. We
label this kind of error clamp as having a
mean zero, variance zero distribution as-
sociated with error, N(0, 0). Performance
of a typical subject that experienced this
condition is illustrated in the left column
of Figure 2B. In the training block, the
reach angles changed (blue dots), result-
ing in partial compensation for the per-
turbation and placement of the cursor
near the target. Importantly, by near the
end of training, the cursor positions ex-
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Figure 2. Behavior of typical subjects (left) and groups (mean � SEM across subjects; right) for the No clamp (A), N(0, 0) (B),
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lines indicate the predictions of the model (mean � SEM across subjects).
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hibited both a residual mean error (�3.4°) and variance (11.6
deg 2). At the onset of the N(0, 0) error clamp, the cursor position
became decoupled from reach angles. Consequently, the reach
angles exhibited a change toward baseline.

We fit a state-space model to the data in the baseline and
training trials and then fixed the model parameters and used it to
predict performance in the error clamp. The model accounted for
91% of the variance in the reach angle of this subject over the
range of trials fitted, with an RMSE of 4.2°, and produced an
estimate of trial-to-trial retention of 0.96 � 0.02 across subjects.
The model predicted that, at the onset of the error-clamp trials,
the reach angles should gradually revert toward baseline and that
this reversion would not be complete by the end of the block,
resulting in a nonzero bias (Fig. 2B, black dots, left column). We
observed both of these predictions in the data collected from this
subject. However, it appeared that the actual decay in reach an-
gles was somewhat faster than predicted (Fig. 2B, blue vs black
dots, left column).

To analyze the group data, we again fit a state-space model to
the baseline and training data of each subject and then computed
the predictions of the model for the error-clamp and washout
blocks. By the end of the training block, the reach angles exhibited
residual error of �9.1 � 2.6°, an amount significantly different
from zero (t(6) � 3.5, p � 0.01). The model fit the baseline and
training data well (VAF, 84 � 4%; RMSE, 4.2 � 0.1°) and then
predicted a decay in reach angles during the N(0, 0) error clamp,
producing a predicted bias of 7.8 � 2.6° at the end of that block
(Fig. 2B, black line, right column). Indeed, in the measured data,
we found that reach angles in the error-clamp block declined
(end of training vs end of clamp, paired t test, t(6) � 6.17, p �
0.001), resulting in a bias of 8.4 � 2.9° at the end of the block. This
bias at the end of the error-clamp block was a fraction (32 � 15%)
of the reach angles achieved during the training block, a fraction
that was similar to that observed in our previous work in a force-
field learning task (26 � 5%, Experiment 1 in the study by Vas-
wani and Shadmehr, 2013). Therefore, exposure to the N(0, 0)
error clamp resulted in a reversion of the reach angles toward
baseline, with an endpoint that was well predicted by the model.

However, the model predictions and measurements differed in
one aspect. After introduction of the error-clamp trials, the reach
angles changed more rapidly than was predicted by the model
(paired t test, first 20 trials of clamps, t(6) � �2.5, p � 0.05). Overall,
the model did a modest job predicting the data in the clamp and
washout blocks (VAF, 42 � 8%; RMSE, 7.0 � 0.9°).

In summary, the results of the N(0, 0) group illustrated that, in
the error-clamp block, the motor output decayed toward baseline
with an endpoint that was well predicted by the model but with a
decay rate that was significantly faster than predicted. The inabil-
ity of the model to fully predict the data is important because it
puts in doubt the applicability of the state-space model and the
interpretation that it provides for residual errors at the end of
training. However, another possibility is that the state-space
model does provide an accurate description of one kind of learn-
ing that occurs in adaptation tasks, but that this specific form of
error-clamp trial is not an innocuous probe, instead transitioning
behavior to an alternative learning process evidenced by, in this
case, a faster reversion to baseline.

A nonzero-error clamp led to exploratory behavior
We next considered an error clamp in which, instead of zero
error, subjects were presented with a small constant nonzero er-
ror [N(�2.7, 0) group]. Importantly, the error in the error-clamp
block was smaller than the participants’ residual error in the

training block. Our hypothesis was that a sudden decorrelation
between actions and errors in the setting of a residual error might
trigger processes sensitive to residual target error and overcome
the steady state reached by adaptation. As we will show, the state-
space model predicted partial reversion to baseline. However,
behavior was dramatically different from predicted.

After the training block, volunteers in this group were exposed
to a distribution of visual feedback in which the mean error was
�2.7°, with zero variance. Performance of a typical subject in the
N(�2.7, 0) group is shown in the left column of Figure 2C. By the
end of the training block, this participant’s reach angles produced
a residual error of �7.2°. Note that the magnitude of this error
was larger than the errors presented in the error-clamp block. As
a consequence, the state-space model predicted that the reach
angles would revert partially toward baseline (Fig. 2C, black
dots). However, the participant’s behavior was qualitatively dif-
ferent from that predicted: reach angles did not monotonically
revert toward baseline but instead varied dramatically from trial
to trial. It appeared that the participant was searching for a reach
angle that would place the cursor in the target.

The group data are shown in the right column of Figure 2C. By
the end of the training block, movements exhibited a residual
error of �5.8 � 0.6°. Remarkably, when presented with a smaller
error in the error-clamp block, rather than maintaining their
performance or reverting toward baseline, the subjects increased
their reach angle (end of training vs end of clamp, t(14) � 2.6, p �
0.02), attempting to close the small but persistent error. By the
end of the clamp block, they reached on average 32.1 � 3.4° from
the target. This behavior in the N(�2.7, 0°) error-clamp trials was
interesting because it was quite different from expected from the
standpoint of the behavior in the training trials. Subjects maintained
a persistent error of �5.8°, on average, in the training trials but
attempted to remove a smaller �2.7° error in the clamp trials.

We fit the state-space model to each participant’s data in the
training trials and then used the model to predict behavior in the
error-clamp and washout trials. The model estimated a trial-to-
trial retention of 0.95 � 0.01 and predicted that reach angles
should decrease in clamp trials because of the reduction in mean
error size. However, this did not occur because, on average, reach
angles increased (Fig. 2C). Indeed, the model was a poor predic-
tor of behavior in the error-clamp block (fit period, VAF, 83 �
2% and RMSE, 5.4 � 0.3°; prediction period, VAF, 51 � 4% and
RMSE, 17.1 � 2.5°). Behavior in this group appears to reflect a tran-
sition toward using an alternative learning mechanism to close the
constant residual error. As we will show later, instead of learning
from error, soon after the start of the error-clamp block, some sub-
jects in this group behaved in a way that suggested exploration.

Learning from error continued only when error clamps
presented nonzero mean and nonzero variance
To further ascertain what it was about the nonzero-error clamp
that led to the exploratory behavior, we tested a new N(�2.7, 25)
group, in which subjects were presented with the same constant,
small bias, on average, but also with a variance similar to the
subject’s own performance in the training block. In previous
work, we have shown that giving an error clamp with variance
similar to that seen during initial adaptation slows the reversion
to baseline (Vaswani and Shadmehr, 2013). Thus, if the explor-
atory behavior seen in the N(�2.7, 0) group was the result of
detecting the change to nonzero clamp with zero variance, per-
haps detection would be more difficult with a more naturalistic
variance of errors in the nonzero-error clamp. Performance of a
typical subject in the N(�2.7, 25) group is shown in the left
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column of Figure 2D. At the end of the training block, the subject
had a �4.1° residual mean error and 12.0 deg 2 variance of error.
We fit the model to the data in the baseline and training blocks of
this subject and found that it well predicted that subject’s perfor-
mance in the ensuing error-clamp and washout blocks (Fig. 2C,
left column; fit period, VAF, 92% and RMSE, 4.3°; prediction
period, VAF, 84% and RMSE, 3.8°).

This excellent prediction ability was true in the group data as
well. In the N(�2.7, 25) group data, by the end of the training
block, the movements exhibited a residual error of mean of
�4.9 � 0.5° and variance of 19.3 � 1.5 deg 2. When we fit the
model to the training trials for each subject in the N(�2.7, 25)
group and then used the model to predict behavior in the remain-
ing trials, we found that, in the error-clamp and washout blocks,
the measured behavior was well predicted by the state-space
model (Fig. 2D; fit period, VAF, 85 � 3% and RMSE, 5.6 � 0.6°;
prediction period, VAF, 67 � 8% and RMSE, 9.4 � 2.8°). Indeed,
the model did a better job of predicting behavior in the N(�2.7,
25) error-clamp block compared with N(�2.7, 0) group (Mann–
Whitney U test, U(9,15) � 26, p � 0.02), as well as better than the
N(0, 0) group (Mann–Whitney U test, U(7,9) � 9, p � 0.02). That
is, it appeared that, when the feedback distribution in the error-
clamp block had a nonzero mean and variance, a state-space
model that accounted for a subject’s behavior during training
could also account for behavior in clamp trials. This was the case
even when the distribution of feedback had a reduced bias com-
pared with the training block. The exploratory behavior seen in
the N(�2.7, 0) group, in which there was a small nonzero error
with zero variance, was not seen in the setting of normal variance.
This suggests that error-dependent learning described by the
state-space model is the default learning system during adapta-
tion, unless a change in the statistics of movements is detected.

The state-space model assumes that changes in behavior are
driven by prediction errors in sensory outcomes of motor com-
mands. We have shown previously that adaptation based on sensory
prediction errors will proceed at the expense of decreasing task suc-
cess (hitting the target goal; Mazzoni and Krakauer, 2006). This led
us to conclude that cerebellar-based sensory-prediction error-
dependent adaptation is indifferent to reward (Krakauer et al., 2006;
Krakauer and Mazzoni, 2011; Izawa et al., 2012; Haith and Krakauer,
2013). If this is true, then it predicts that behavior predicted by a
state-space model in a nonzero-error clamp should proceed in the
absence of task success (hitting the target).

In the N(�2.7, 25) group, the cursor hit the target on 16% of
the clamp trials. To test whether these rewarded movements were
affecting behavior, we considered an error-clamp condition in
which the distribution of feedback had both a variance and a
small bias, but none of the trials produced a rewarding outcome
during the error-clamp block (Fig. 2E). In this N(�2.7, 25) no-
reward group, any randomly generated cursor position in the
error-clamp block that would land in the target was discarded
and resampled from the N(�2.7, 25) distribution. For each sub-
ject, we fit the model to the data in the baseline and training
blocks and then used the model to predict behavior in the re-
maining trials. We found that, despite the absence of rewarding
trials, performance in the error clamp was again well predicted
(fit period, VAF, 83 � 2% and RMSE, 5.4 � 0.4°; prediction
period, VAF, 70 � 5% and RMSE, 7.1 � 0.5°). That is, even
without task success, error-based learning in the training trials
was essentially maintained in the N(�2.7, 2.5) no-reward group
as in the N(�2.7, 2.5) group.

Finally, we considered a scenario in which the feedback had a
variance similar to subjects’ own movements but no bias: N(0,

25) group. In this group, by the end of the training block, the
movements exhibited a bias of 8.1 � 1.8° and variance of 23.4 �
3.3 deg 2. We fit the model to the baseline and training trials for
each subject and then used it to predict behavior in the error-
clamp block. The model predicted decay in the error-clamp
block, but the observed decay was again faster (Fig. 2F). Indeed,
the model did a poor job of predicting behavior in the error-
clamp and washout blocks (fit period, VAF, 78 � 3% and RMSE,
5.8 � 0.3°; prediction period, VAF, 33 � 5% and RMSE, 10.6 �
1.0°). As in the N(0, 0) group, the measured behavior exhibited a
decay that was faster than predicted by the model, suggesting that
a change in policy also occurred when the bias of the distribution
of feedback was altered in clamp trials.

Overall, the results suggest that, when sensory feedback is de-
coupled from the motor commands of the subject, a condition
that is met in all error-clamp trials, the error-dependent learning
policy in the training trials is essentially maintained if the distri-
bution of errors in the error-clamp trials (including mean and
variance) are similar to subjects’ own patterns in the preceding
training trials. To statistically test this idea, we used a nonpara-
metric ANOVA to test the effect of error distribution on the
ability of the state-space model to account for behavior in the
clamp and washout blocks. There was no difference in the mean
or variance of the distribution of error during the end of the
training period across groups (ANOVA: mean, F(5) � 1.9, p �
0.1; variance, F(5) � 1.7, p � 0.1). However, when we varied the
distribution of feedback in clamp trials, there was a significant
difference in the prediction period VAF across groups (Kruskal–
Wallis test, � 2

(5) � 32.4, p � 0.00001). We compared the predic-
tion period VAF for each group with the VAF in the no-clamp
group. Post hoc tests of mean rank revealed no significant reduc-
tion in the ability of the model to account for behavior in the
N(�2.7, 25) and N(�2.7, 25) no-reward error-clamp blocks
compared with the no-clamp group. Therefore, the learning policy
that was present in the training trials was essentially maintained in
the N(�2.7, 25) and N(�2.7, 25) no-reward error-clamp blocks.
However, the prediction period VAF in the N(0, 0), N(�2.7, 0), and
N(0, 25) groups was significantly different from that in the extended
training group.

Therefore, when the error-clamp block presented an error
distribution that was similar to errors during training, behavior
appeared consistent with the training trials, exhibiting learning
from error and partial reversion to baseline. When the error-
clamp block presented an error distribution that was different
from the training trials, new behavior appeared that was different
from the training trials.

Quantifying exploration
As mentioned above, participants in the N(�2.7, 0) group
showed behavior that was quite different from what would be
expected by a state-space model: in clamp trials, they dramatically
increased their trial-to-trial variability (Fig. 3A). This increased
variability appeared to us to be a form of exploration. We at-
tempted to quantify this behavior.

Because subjects can have very different variability in their
reach direction across movements, we defined exploration as a
sustained increase (persistently �2 SD above the mean) in the
trial-to-trial variability of a subject’s movements compared with
the typical trial-to-trial variability observed in the training block
for that subject (Fig. 3A, bottom row). This metric appeared to
capture successfully the trials in which subjects were exploring.
Subjects in the N(�2.7, 0) group explored an average of 19 � 6.5
trials. This group included three subjects who explored for more
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than half of the 100 clamp trials. No subjects in the no-clamp
group and only one subject in the N(0, 0) group showed any
evidence of exploration (Fig. 3B).

Why did subjects change their behavior so dramatically from
that observed in training? During the training block, errors had a
nonzero mean and a nonzero variance. In the N(�2.7, 0) error-
clamp block, the cursor was placed 2.7° away from the center of
the target, regardless of the movement produced by the subjects.
Therefore, the onset of the N(�2.7, 0) error-clamp block pro-
duced four kinds of change in the feedback: (1) a reduction in the
mean of the distribution associated with the position of the cur-
sor; (2) a change in the variance of this distribution; (3) a change
in the rate of success, in terms of accurately bringing the cursor to
the target; and (4) a change in the correlation between reach
angles and cursor position (in error-clamp blocks, the two become

decoupled). Perhaps in the N(�2.7, 0)
group, the sudden change in the feedback
from the training block to the error-clamp
block was instrumental in altering the
learning policy.

We used the number of exploration
trials as our proxy for a change in the
learning policy. At the group level, we
found that the probability of change in
policy was largest for the N(�2.7, 0)
group and smallest in the N(0, 25) and
N(�2.7, 25) no-reward groups. We also
examined whether there were any differ-
ences between individuals in the N(�2.7,
0) group. If all individuals were equally
sensitive to changes in the feedback distri-
bution, subjects who experience a greater
change in feedback might be expected to
be more likely to change their policy.
However, among subjects in the N(�2.7,
0) group, there was no relationship be-
tween the bias at the end of training and
the number of trials of exploration ob-
served in clamp trials (p � 0.4). Subjects
may differ in their sensitivity to changes in
the feedback distribution. However, as a
group, when a change in the distribution
of feedback was presented, subjects were
more likely to exhibit a change in policy.

The selective exploratory behavior we
observed in the N(�2.7, 0) group could
not be accounted for simply by noise in
the learning process. We simulated the be-
havior of 100 subjects in each group using
a state-space model with state noise (Eq. 2;
van Beers et al., 2013). With this state noise
present, a small number of trials were classi-
fied as exploratory (less than five trials on
average), critically with no difference be-
tween groups in the amount of exploration
(ANOVA, F(5) � 0.92, p � 0.5).

The engagement of an exploratory pol-
icy may rely, in part, on cognitive aware-
ness of a change in the task in clamp trials.
All participants were instructed to report
whether they noticed anything “weird” dur-
ing the experiment. One participant in the
N(�2.7, 0) group who showed exploratory

behavior noticed a change in the experiment during the clamp pe-
riod and asked whether the goal was still to hit the target. Although
this evidence is anecdotal, it lends support to the idea that the explor-
atory behavior is distinct from what is engaged during initial learning.

Discussion
When movements are perturbed, resulting in errors, the motor
system rapidly adapts its output to reduce these errors (Shad-
mehr and Brashers-Krug, 1997; Krakauer et al., 1999, 2000; Thor-
oughman and Shadmehr, 2000). However, when a visual
perturbation is presented repeatedly, subjects do not completely
adapt. Instead, subjects sustain a residual error in their move-
ments. What is the reason for these residual errors?

Here, we demonstrated that, even with extended training,
subjects sustained a residual error when learning to compensate

Figure 3. Exploration in clamp trials. A, In the N(�2.7, 0) group, some subjects tried to close the error gradually (top left),
whereas some dramatically increased the trial-to-trial variability of their movements (top right). We identified these trials in which
subjects were exploring (gray) by comparing the variance of subjects’ movements with their variance during the training period
(bottom). B, The number of trials identified as exploration (mean� SEM across subjects) in the six groups. Subjects in the N(�2.7,
0) group explored more than any other group, including three subjects who explored for �50 trials. nr, No reward.
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for a visuomotor rotation. In the framework of a state-space
model, this residual error can be attributed to a balance between
learning from error and incomplete trial-to-trial retention. To
test this idea, we used the state-space model to fit the data during
training and then fixed model parameters and used it to predict
behavior during conditions in which we controlled the error dis-
tribution, named error-clamp trials (Scheidt et al., 2000). We
found that, in error-clamp trials with a smaller error than the
residual error and no variance, subjects changed their policy dra-
matically and acted to close the error, exhibiting exploratory be-
havior while doing so. In error-clamp trials with zero bias,
subjects also changed their policy and exhibited a faster reversion
to baseline than expected. However, these changes in policy were
prevented if the distribution of feedback in the error-clamp block
had a bias and variance similar to that in the training block (even
when feedback precluded successful trials and was unrelated to
subjects’ own motor commands). In these cases, the error-
dependent process that accounted for learning in the training
block also accounted for behavior in the error-clamp block.
Therefore, it appears that the residual errors during training are
indeed attributable to a balance between learning from error and
incomplete trial-to-trial retention.

Our results show that trial-to-trial retention and error-
dependent learning processes that can describe behavior during
adaptation can also mostly predict behavior when errors are im-
posed artificially. However, the key new result is that this is only
the case if the overall distribution of imposed errors is similar to that
generated by subjects themselves. In contrast, when experiencing
feedback that lacked realistic trial-to-trial bias and variability, sub-
jects demonstrated changes in behavior that were qualitatively dif-
ferent from state-space model predictions from the training period.
In particular, subjects tried to overcome a fixed imposed error that
was in fact smaller than the mean residual error they had sustained
during the training block and exhibited a faster reversion to baseline
when the distribution of imposed error had zero bias.

We and others have suggested that, in addition to error-based
learning, other learning processes may operate in motor adapta-
tion tasks (Diedrichsen et al., 2010; Huang et al., 2011; Izawa and
Shadmehr, 2011). In particular, we have suggested that state-
space models are good fits for error-based learning and that de-
viation from state-space predictions does not imply falsification
of the model but rather that additional learning processes are at
play (Huang et al., 2011; Herzfeld et al., 2014). Similarly, the
current and previous experiments suggest that error clamps can
serve as both readouts for processes captured by state-space mod-
els and a trigger for additional learning processes. Zero-error-
clamp trials, in which feedback is constrained to zero and
decoupled from subjects’ behavior, have led to insights into
learning processes that are well captured by state-space models
(Hwang et al., 2006; Criscimagna-Hemminger and Shadmehr,
2008; Tanaka et al., 2009). However, an increasing body of evi-
dence has demonstrated that zero-error clamps are not innocu-
ous but can induce subjects to actively change their learning
policy (Pekny et al., 2011; Shmuelof et al., 2011; Vaswani and
Shadmehr, 2013). Recent work suggests that the distribution and
type of feedback available might determine the nature of the be-
havior elicited in clamp trials (Pekny et al., 2011; Shmuelof et al.,
2011, 2012; Vaswani and Shadmehr, 2013).

Here, instead of presenting clamps in which error was zero on
every trial, we parameterized the distribution of errors. Using a
state-space model, we fit the behavior during training and as-
sayed the degree to which the process of learning during the
training block predicted behavior during the clamp block.

We found that the state-space model failed to predict behavior
in the clamp trials in which the error distribution was very differ-
ent from subjects’ performance in the training trials. The reason,
we suggest, is that subjects are likely to alter their behavior when
they detect a change in the distribution of errors (Shmuelof et al.,
2011; Vaswani and Shadmehr, 2013). In Vaswani and Shadmehr
(2013), we presented subjects with a distribution of feedback that
had a similar mean and variance to that during training. Here, we
saw a qualitative change in the response to errors when either the
mean or variance of the feedback distribution changed. In some
cases, subjects exhibited a faster reversion to baseline than was
predicted by their behavior during training. In other cases, sub-
jects dramatically increased the trial-to-trial variability in their
movements in response to an error; this exploratory behavior
could not be described by state-space models of learning. It is
striking that, despite the availability of this alternate strategy,
subjects did not use it to reduce residual error during the training
block or when variability of feedback in clamp trials matched that
seen at asymptote. We only observed exploratory behavior when
errors during the clamp block had a fixed mean and zero variance.

In a previous study, we showed that, when feedback was al-
tered to provide only binary information at the asymptote of the
training block, there was a qualitative change in behavior in sub-
sequent (zero-error) clamp trials (Shmuelof et al., 2012) com-
pared with subjects who received both binary and full cursor
feedback. Our explanation for this effect was that providing only
binary feedback promoted engagement of an alternative learning
system to maintain behavior at asymptote. Therefore, the avail-
ability of vector error information from full cursor feedback must
have led to a suppression of this alternative learning mechanism.
A similar selective suppression of a secondary learning process
could explain the failure to overcome residual error at asymptote.
Like the switch to binary error in our previous study (Shmuelof et
al., 2012), a change in the distribution of feedback to a persistent
residual error triggered engagement of a secondary learning pro-
cess (exploration) that was capable of reducing the residual error.
This secondary learning process was not engaged when the dis-
tribution of feedback was similar to that during training, even
when the bias of the distribution was the same and successful
outcomes were withheld, perhaps because subjects perceived that
they were in control of the errors and therefore persisted with
behavior similar to when veridical feedback was provided (Bhanji
and Delgado, 2014).

We suggest that the secondary learning process observed in
the N(�2.7, 0) group is reinforcement-based (Huang et al., 2011;
Izawa and Shadmehr, 2011; Haith and Krakauer, 2013), which is
consistent with the exploratory nature of the behavior. Further-
more, the lack of sensitivity to removal of reward when subjects
received a realistic distribution of feedback in clamp trials sug-
gests that this reinforcement-based component of learning plays
little role in the behavior of the majority of the groups we consid-
ered. Providing endpoint feedback alone appears to be another
way to promote engagement of reinforcement-based learning
(Izawa and Shadmehr, 2011). Notably, when subjects adapt given
only endpoint feedback, they show more exploratory behavior
early on and less asymptotic residual error (Taylor et al., 2014),
further supporting the view that residual errors and reversion to
baseline are not universal limitations to human motor learning
but are a characteristic feature of error-based learning.

Therefore, state-space models may capture a particular form
of learning that dominates in typical adaptation tasks, in which
errors are related to the actions one produces. This form of learn-
ing leads to rapid reduction of errors, at the expense of a residual
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asymptotic error. What is the underlying learning mechanism
that the state-space model captures so effectively? The error-
driven component of the state-space model appears to relate to
prediction errors driving an update to an internal forward model
in the cerebellum (Mazzoni and Krakauer, 2006; Tseng et al.,
2007; Taylor et al., 2010; Izawa and Shadmehr, 2011). The rever-
sion to baseline during training could reflect passive decay in time
of the parameters of this forward model. When experiments are
conducted with longer intertrial intervals, monkeys exhibit re-
duced learning and reduced complex spike-induced long-term
depression of Purkinje cells, indicating that cerebellar learning is
affected by the passage of time between trials (Yang and Lis-
berger, 2014). Passive decay may be advantageous because envi-
ronmental processes themselves tend to dissipate over time
(Kording et al., 2007). Alternatively, reversion to baseline could
reflect competition between a weakly and a strongly reinforced
action (Shmuelof et al., 2012).

Conclusion
Residual errors in adaptation tasks reflect the operation of a single
learning process (forward model-based, cerebellar-dependent) that,
when provided with strong vector error, suppresses alternative
forms of learning and is well captured by a state-space model. This
suppression can be overcome through changes in the distribution of
feedback provided either during acquisition (Izawa and Shadmehr,
2011; Shmuelof et al., 2012) or during error-clamp trials, as was done
here. These changes in feedback lead to recruitment of an explor-
atory, possibly reinforcement-based, mechanism that is capable of
reducing residual asymptotic errors. We conclude that error clamps
can be “neutral” and capture the predicted retention behavior of
state-space models when vector feedback is provided and when the
distribution of errors matches those during acquisition. When these
aspects of feedback are altered, other forms of learning are triggered
that do not follow state-space model dynamics.
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