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Here we argue that general principles with regard to the contributions of the cerebellum, basal ganglia, and
primary motor cortex to motor learning can begin to be inferred from explicit comparison across model
systems and consideration of phylogeny. Both the cerebellum and the basal ganglia have highly conserved
circuit architecture in vertebrates. The cerebellum has consistently been shown to be necessary for adapta-
tion of eye and limb movements. The precise contribution of the basal ganglia to motor learning remains
unclear but one consistent finding is that they are necessary for early acquisition of novel sequential actions.
The primary motor cortex allows independent control of joints and construction of newmovement synergies.
We suggest that this capacity of the motor cortex implies that it is a necessary locus for motor skill learning,
which we argue is the ability to execute selected actions with increasing speed and precision.
Biology, like other scientific disciplines, has its model systems.

For example, E. coli, C. elegans, and Drosophila are considered

simple experimental systems for the discovery of molecular,

cellular, and genetic mechanisms that then generalize to

untested species. In motor neuroscience we also have various

model systems. The assumption that findings in model systems

can generalize is implicit to the neuroscientific enterprise in so

much that work in multiple model systems is ongoing, funded,

and published. It is rare, however, to find any explicit mention

of the logic underlying the choice of a particular model system,

beyond perhaps its experimental tractability, and even more

rare to find overt comparisons made between model systems

in the motor learning literature (but see Olveczky, 2011; Shad-

mehr andWise, 2005). Choice of model system should be based

on judicious use of knowledge of phylogenetic relationships and

these chosen model systems should be distributed widely

across the tree of life in order to reduce the risk of studying an

idiosyncratic species (Krakauer et al., 2011).

Use of the term phylogeny is likely to seem jarring in a review

about motor learning and, if so, speaks to the almost complete

absence of evolutionary considerations in the mainstreammotor

control or motor learning literature. This is surprising as a shared

natural history provides the opportunity for fruitful generalization:

‘‘The observation that all of life shares an evolutionary history

imposes enormous regularity on biology in the form of conserved

traits amenable to general description and explanation’’ (Kraka-

uer, 2002). Thus, knowledge of phylogeny can help build more

powerful general conceptual frameworks.

In this review, in addition to making a case for a comparative

model systems approach, we argue that there is continuing

usefulness for decomposition and localization as heuristic strat-

egies in mechanism-based neuroscience research (Bechtel and

Richardson, 2010). Specifically, we assume that the motor

system is made up of isolable subsystems, each with different

capacities. Decomposition is based on the assumption that

mechanisms of behavior are made up of component parts and
component operations. Localization implies a spatial location

for a component part but does not necessarily imply a single

contiguous location. There have been two kinds of criticism of

the decomposition and localization approach. One has been to

say that many properties of a system arise from the hierarchical

organization of its components and their nonlinear interactions.

The other has been to posit distributed networks in which the

connectivity architecture generates the behavior but that this

holistic architecture cannot be broken down into separate

modules performing recognizable subtasks. This distributed

network view is especially prominent when it comes to the study

of higher cortical function in cognitive neuroscience (Uttal, 2003).

These potential criticisms are mitigated in our view in several

ways. First, many of the component parts of motor learning are

localized in noncortical areas; the spinal cord, brainstem, basal

ganglia, and the cerebellum. These lower-level areas are likely

more modular than higher-order cortical areas. Second, these

structures are highly conserved phylogenetically, which sug-

gests conserved mechanisms. Third, when it comes to cortex,

we will focus exclusively on primary motor cortex (M1), which

shows more evolutionary variation than subcortical structures

but less than heteromodal cortex. Fourth, we assume that these

component parts combine to generate the behavior in question.

In the case of the areas discussed in this review; they can still be

considered components of a network but in which intrinsic com-

putational operations with message passing between compo-

nents is emphasized over weight changes in layers of a holistic

network. Fifth, we accept the likely possibility that new opera-

tions, which no individual component possesses, may arise

through interaction between components. Decomposition is

just a starting point or null hypothesis, which in our view is

more useful than vague statements about the ‘‘loop’’ or the

‘‘whole circuit’’ doing the work with no suggestion as to how

this would be proven experimentally or modeled computation-

ally. Finally, here the focus is on learning rather than implemen-

tation of that learning via another structure. For example, if the
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Figure 1. Cerebellum, Basal Ganglia, and Motor Cortex Analogs in Mouse, Bird, and Primate
Cerebellum (CB), basal ganglia (BG), and primary motor cortex (M1) in three animal models. In the bird, the robust nucleus of the arcopallium (RA) is considered to
be the analog to motor cortex in mammals. LMAN connects BG to RA.
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cerebellum is required for learning but the resultant improved

performance is expressed via commands from motor cortex,

this does not in our view mean that learning is taking place in a

‘‘cortico-cerebellar loop.’’ The three anatomical components

that we will discuss in this review are the cerebellum, basal

ganglia, and motor cortex (Figure 1).

The review, not surprisingly, raises more questions than

answers, and if anything should be considered a form of mani-

festo. The overall purpose is to call attention to the benefits

of a comparative approach. First, we hope to show that explicit

comparison of motor learning results across the various model

systems currently under investigation can help support or refute

viewpoints on the role of specific structures. Second, to inspire

experimental directions in any given model system that might

otherwise not be considered. Finally, given that neurorehabilita-

tion is predicated on motor learning (Krakauer, 2006), taking a

closer look at how motor learning itself is accomplished after

brain injury and disease in model systems may improve the

way that we train patients to gain back their lost motor abilities.

Motor learning is a blanket term for any practice-related

change or improvement in motor performance for a defined vari-

able of interest. In this review, we will draw a broad distinction

between two learning mechanisms—motor adaptation and skill

learning. By motor adaptation we mean the fast changes that

return behavior to baseline levels of performance in the setting

of perturbations that induce systematic errors, for example,

prism adaptation. By skill learning we mean the slower changes

that lead to performance improvements that are better than

baseline. Such behaviors include learning to ride a bicycle or

to play the violin. In addition to these two kinds of motor learning,

there is an intermediate category of learning that is more difficult

to categorize but can be broadly captured by the idea of action

selection. The whole field of reinforcement learning is predicated

on the idea that particular actions come to be associated with

successful goal completion. For example, completing a maze

or learning to press a lever for food at particular intervals. The

question is—is this motor skill learning? We would say no

because the quality of the motor performance itself is not the

metric of interest, instead the motor system is just used to

read out whether operant learning has occurred. We will have
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more to say about this in the course of the review. For now we

will restrict ourselves to the comment that it is of interest that

many studies of skill have focused on sequence learning, in

which the order in which actions must be performed is almost

always emphasized over the quality of the execution of the

actions themselves.

There are clear preferences with regard to the kind of motor

learning studied depending on the effector and model system

used. For example, in the case of eye movements, the focus is

mostly on adaptation (Schubert and Zee, 2010), indeed it is

hard to imagine what a skilled eyemovement would be. In rodent

models, in contrast, the focus has been either on skilled prehen-

sion movements (Whishaw and Pellis, 1990), for which training

increases the probability of success, or action selection with

fairly coarsemovements (Jog et al., 1999). In bird song, the focus

has also been on selecting a sequence of vocalizations through

comparison with a template (Brainard and Doupe, 2002). In

humans, the focus switches back to adaptation—forcefields,

visuomotor rotations, and split-treadmills (Bedford, 1989; Cun-

ningham, 1989; Reisman et al., 2005). It is only when one looks

across the model systems being studied that one clearly sees

these task preferences and can ask what motivates them.

Cerebellum
We begin by discussing the role of the cerebellum in motor

learning because in this case we seem to be closest to a unifying

hypothesis, precisely because of the consistency of the experi-

mental results across model systems. All vertebrate brains

have a cerebellum, some also have additional cerebellar-like

structures, with a highly conserved architecture (Bell, 2002;

Bell et al., 2008). This conserved architecture is thought to result

from historical or phylogenetic homology in the case of the cere-

bellum, i.e., inherited from a common ancestor and suggests a

sustained evolutionary requirement for a specific kind of compu-

tation. A large amount of research across many species sug-

gests that the cerebellum can compute estimates of sensory

consequences of commands. This cerebellar computation

allows for predictive control (simple spike firing tends to lead

limb kinematics [Ebner et al., 2011]), improved sensory esti-

mates (Vaziri et al., 2006), and fast feedback corrections at
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latencies shorter than would be possible with peripheral feed-

back alone (Xu-Wilson et al., 2011). This predictive capacity of

the cerebellum is captured by the idea of a forward model (Wol-

pert and Miall, 1996). A forward model, however, is only useful

for control if it produces unbiased state estimates, which means

that it needs to learn in the face of systematic prediction errors.

Most of the experiments in humans and model systems that

investigate howsystematic errors are reduced canbe interpreted

within the framework of updating of forward models (Shadmehr

et al., 2010). Specifically, several recent studies in humans

suggest that errors induced by external perturbations are inter-

preted as sensory prediction errors rather than target errors

(Mazzoni and Krakauer, 2006; Wong and Shelhamer, 2011),

and these are reduced through a cerebellar-dependent adapta-

tion mechanism (Taylor et al., 2010; Tseng et al., 2007). Learning

for all these forms of adaptation is fast, occurs within minutes or

hours, is well captured by single or double exponentials, shows

prominent aftereffects, and is easily washed out. Very similar

learning behavior is seen across multiple model systems and

appears to also be cerebellar dependent. In monkeys, lesions

of cerebellar cortex severely disrupt adaptation of both Vestibu-

loocular reflex and saccadic eyemovements (Barash et al., 1999;

Lisberger et al., 1984). In cats, lesions of the flocculus abolish

Vestibuloocular reflex adaptation (Luebke and Robinson, 1994).

The rate of rotation adaptation in humans is increased by anodal

transcranial direct current stimulation over the ipsilateral cere-

bellum but not over primary motor cortex (Galea et al., 2011).

Visuomotor adaptation is not disrupted by lesions in the corti-

cospinal tract caused by ischemic stroke in humans (Reisman

et al., 2007; Scheidt and Stoeckmann, 2007; Scheidt et al.,

2000) and is largely unaffected in Parkinson’s disease (PD) (Bé-

dard and Sanes, 2011; Marinelli et al., 2009) and Huntington’s

disease (Smith and Shadmehr, 2005). Thus, motor cortex, the

corticospinal tract, and the basal ganglia do not seem to be

necessary structures for visuomotor adaptation. Subtleties and

controversies arise, however, because abnormalities in adapta-

tion paradigms have been seen in patients who do not have

known cerebellar impairment and patients with cerebellar

disease can reduce errors under certain experimental condi-

tions. We shall discuss these in turn and provide potential expla-

nations that show why these exceptions do not disprove the

cerebellar hypothesis for adaptation. In two recent studies,

patients with PD were able to adapt to a rotation as well as

age-matched controls but did not show savings in re-exposure

(Bédard and Sanes, 2011; Marinelli et al., 2009). We have

recently argued that savings in adaptation paradigms is not

due to forwardmodel-based error reduction but is instead attrib-

utable to an addition operant process (Huang et al., 2011). Using

this new framework, we can explain the result in PD because it is

known that operant learning is disrupted in these patients

(Knowlton et al., 1996). Patients with stroke in the left superior

parietal lobule showed markedly impaired ability to adapt to a

visuomotor rotation (Mutha et al., 2011), which would appear

to contradict the idea that the cerebellum is the (sole) locus for

adaptation. We have recently argued, however, that the parietal

cortex receives the output of a cerebellar forward model, which

is then integrated with peripheral sensory feedback (Tanaka

et al., 2009). Thus, the parietal cortex may be the downstream
target of the cerebellum and thus disruption of this target can

impair adaptation.

A recent study reported that patients with spinocerebellar

ataxia type 6 were able to adapt to an incremental introduced

forcefield but not if the forcefield was introduced as a large step

(Criscimagna-Hemminger et al., 2010). There are two ways to

interpret these data. One is that adaptation to small errors is

carried out in a noncerebellar structure. Alternatively, these

patients brought down error using a non-adaptation-based

mechanism. There is direct and indirect support for the second

interpretation. In amore recent study by the samegroup, patients

who brought down an incremental visuomotor rotation did not

show a change in their perceived hand position (an assay for

a change in the forward model) nor did they show the pattern of

direction generalization that has been described for adaptation

to step rotations (personal communication with authors); both

results suggest that error reduction was accomplished by a qual-

itatively distinct learning mechanism. A clue to what this alterna-

tive learningmechanismmight bewasprovided by a recent study

in which healthy subjects were exposed to an incremental rota-

tion but were provided only with binary reward rather than vector

error (Izawa and Shadmehr, 2011). Under these circumstances,

subjects showed exploratory trial-and-error behavior rather

than typical monotonic adaptation behavior and also did not

show a change in perceived hand position. These two sets of

results in humans are consistent with the idea that errors

can be reduced through cerebellar-independent non-forward

model-based processes as long as the errors lie within the

envelope of exploratory variability. A study of saccadic gain

adaptation in monkeys also showed a small amount of residual

adaptation to a gain change after lesions of the oculomotor

posterior vermis (Barash et al., 1999). The authors of this study

could only speculate as to the locus for this residual capacity to

reduce errors, suggesting it might be mediated by the cerebellar

nuclei. We would suggest that this result in monkeys is reminis-

cent of the human reaching studies reported above and that the

mechanism might be outside the cerebellum. Support for this

idea comes from studies in monkeys, in which intermediate and

lateral deep cerebellar nuclei ablations were performed and yet

slow recovery of limb ataxia was still seen, which was reversed

with lesions to sensory cortex (Mackel, 1987).

Basal Ganglia
Compared to the cerebellum, the precise role of the basal ganglia

in motor learning remains unclear and contradictory. Like the

cerebellum, both the anatomy and neurotransmitter localization

for the basal ganglia (BG) are highly conserved in all vertebrates,

again suggesting a preserved form of computation (Reiner et al.,

1998). Of particular interest, is the fact that basal ganglia output

evolved from principally targeting the tectum in amphibians

to also targeting cortical regions in reptiles and in subsequent

vertebrates (Reiner et al., 1998). In addition, there is no evidence

for either cortical or significant dopaminergic inputs to striatum in

amphibians. Amphibians have simpler musculoskeletal systems

and execute a simpler repertoire of movements than reptiles;

their movements are tectally mediated, stereotypical, and stim-

ulus locked (Reiner et al., 1998). This phylogenetic transition

between amphibians and reptileswith respect to the connections
Neuron 72, November 3, 2011 ª2011 Elsevier Inc. 471
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of the BG is interesting for a number of reasons. First, it suggests

that theBGperforma function that doesnot haveanobligate rela-

tionship to cortex. Second, it suggests a parallel between eyes

movements in primates and stereotypical movements such as

locomotion; both are largely controlled by the brainstem and

spinal cord. Third, although a new kind of learning could arise

from the new connections between the BG and cortex, the inves-

tigation of BG involvement in motor learning should focus first on

whether there is a mechanism common to movements under the

control of motor cortex, brainstem, or the spinal cord. As stated

above, in the section on the cerebellum, adaptation does not

seem to be affected by diseases of the BG (Bédard and Sanes,

2011; Marinelli et al., 2009). Surprisingly, while researching this

review, we could not find examples of experiments in animal

models that investigated the effect of striatal lesions on visuomo-

tor adaptation.

Review of the literature across species suggests instead that

the BG are critical for early learning of sequential actions. The

challenge is todetermine thespecificaspect of sequence learning

that they contribute to. Confusion arises because, as we have

already mentioned above, many studies of the role of the basal

ganglia in learning have used motor behavior as a readout of

learning of higher-order aspects of the behavior rather than

focusing on improvements in the quality of the motor behavior it-

self. For example, a well-known paradigm in monkeys has them

acquire a series of specific sequences of reaches through trial

and error learning, but the reaching movements themselves are

easy and have no speed-accuracy constraint (Hikosaka et al.,

1995). Thus, the movements themselves read out the sequence

order. Using such a task, striatal inactivation (using muscimol)

has shown to impair the ability to acquire short sequences of

button presses in the monkey (Miyachi et al., 1997). In rodents,

striatal lesions impair the ability to learn a sequenceof nosepokes

in a serial reaction time task (Eckart et al., 2010), and learning in

a T-maze task (Moussa et al., 2011). Here again, the quality of

movements themselves is not emphasized.

It is in the bird songmodel that the closest look can be taken at

the distinction we argue for between knowing a sequence and

the quality of its execution. The BG circuit had been shown to

be necessary for song formation (Bottjer et al., 1984; Scharff

and Nottebohm, 1991). In recent years, LMAN, the cortical target

of the BG, has been shown to be the link between the BG and the

motor output pathway, and to be crucial for song development

in juveniles and for song modification in adults (Kao et al., 2005;

Olveczky et al., 2005). Interestingly, one of the functions of this

area is to inject variability into song production. This variability

presumably allows juvenilebirds to acquire a tutor’s song through

exploration (Olveczky et al., 2005). In the adult bird, the contribu-

tion of LMAN to song production is decreased but still apparent

when the song is modulated following disruptive auditory feed-

back (Andalman and Fee, 2009). Variability in the birdsongmodel

is due to exploration, which is different from variability due to

planning and execution noise, reductions in which are not the

focus of these studies (Tumer and Brainard, 2007). This distinc-

tionbetweenexplorationof task spaceand reductionof variability

at a chosen location in task space has been nicely demonstrated

in a series of studies using a virtual ball and skittle task in humans

(Cohen and Sternad, 2009; Müller and Sternad, 2004).
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A paradigm recently introduced in adult songbirds induces

short-term learning following song disruption (Andalman and

Fee, 2009; Tumer and Brainard, 2007; Warren et al., 2011).

Specifically, it has been shown that playing white noise to the

bird if the frequency of a specific syllable is within a prespecified

range lead to song adjustments to avoid the white noise disrup-

tion. After learning in this paradigm, LMAN inactivation has

shown to partially reverse the song adjustment (Andalman and

Fee, 2009; Warren et al., 2011). We would argue that this

behavior in birds is similar to error reduction in cerebellar

patients (Criscimagna-Hemminger et al., 2010) and when binary

reward is provided to healthy human subjects (Izawa and Shad-

mehr, 2011). In both cases, subjects use reward to select one

movement over another but, critically, the newly selected move-

ment is not executed any better than the original one. Similarly, in

the songbird, syllable variability at the new frequency is the

same, if not increased, compared to the initial frequency (Andal-

man and Fee, 2009; Warren et al., 2011)—thus syllable produc-

tion per se at the new frequency has not improved. It is of course

possible that improvement in song execution, motor skill, may

occur during song acquisition but this has not been shown yet.

We predict that this aspect of motor learning will be a property

of the song execution circuit rather than the BG circuit and could

be investigated by tracking trial-to-trial variability during song

practice after LMAN inactivation. Pallidotomy in humans, as a

treatment for PD, is consistently associated with an impaired

ability to learn new motor sequences (Brown et al., 2003; Obeso

et al., 2009). Thus, the unifying principle is that learning of

sequential actions proceeds through trial and error, which is

aided by the injection of variability by dopaminergic projections

to BG, variability then decreases as the chosen successful action

automatizes to a stereotypy (Costa, 2011).

Our position so far is that the exploration-to-stereotypy view of

sequential learning leaves out improvement in the quality of

movement execution itself and that the birdsong literature has

not yet shown evidence for the latter. In rodents, however, there

is possibly some evidence that BG circuits play a role in task

improvement through changes in the quality of movement

execution. In the rotarod task, mice improve their ability to run

for longer periods of time on an accelerating training wheel and

this is associated with potentiation of synaptic strength in the

striatum (Costa et al., 2004; Yin et al., 2009). Protein synthesis

inhibition in the striatum has been shown to impair early stages

of learning of the precision reaching task in rats (Wächter et al.,

2010). How to interpret these results? One possibility is that

action selection makes a significant contribution to the rotarod

and prehension tasks (detailed movement analysis was not per-

formed in these studies). Another possibility is that quality of

movement execution is indeed improving in these tasks and

that the BG, through their connections to cortex, have evolved

to play a role in true skill learning. In support of the latter idea,

sequence tasks and initial improvement in the rotarod task

have shown to depend on striatal areas that project to the

prefrontal cortex (Miyachi et al., 1997; Yin et al., 2005, 2009)

whereas improvement across days has shown to be dependent

on striatal areas that project to the sensorimotor cortex (Yin et al.,

2004, 2009). Thus despite what appears to be a qualitative

different kind of motor learning: selection of a sequence of
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actions versus better execution of the sequence elements, it is

possible that both these behaviors depend on similar BG

computations but with different cortical targets. While BG rein-

forces better action selection through its projections to the

prefrontal cortex at early stages of learning, BG connections to

the motor cortex could enhance selection of better muscle

combinations during later stages of training.

Primary Motor Cortex
Sensory and motor neocortex are markedly more developed in

mammals compared to amphibians, reptiles, and birds (Butler

and Hodos, 2005). In our taxonomy of learning, we have dis-

cussed the necessity of the cerebellum for motor adaptation

and the basal ganglia for early trial-and-error learning of action

sequences. So what about motor cortex? One important clue

for answering this question is to realize that, unlike the striatum

and the cerebellum, M1 is a controller; it sends commands

directly or indirectly (via interneurons) to motorneurons. Many

purposeful behaviors can unfold in the absence of descending

commands frommotor cortex, for example over ground locomo-

tion in rodents (Metz et al., 1998) and treadmill walking in cats

(Hiebert et al., 1996). In the case of eye movements, there is

no direct equivalent of M1; the frontal eye fields (FEF) do not

directly control oculomotor neurons in the brainstem for saccade

generation (Hanes and Wurtz, 2001). An interpretation of a lot

of data, some of which we describe below, is that motor

cortex offers an extra level of limb control that is not provided

by the brainstem and spinal cord: flexible combinations of move-

ments that isolate individual joints and allow performance of

novel tasks and interaction with novel objects. Such flexibility

requires learning throughout life as hardwired stereotyped syner-

gies cannot anticipate ever-changing environmental challenges.

In order to control a single joint out of synergy requires knowl-

edge of limb dynamics to compensate for interaction torques

across joints. Recent work in primates and humans suggests

that M1 has this capacity (Gritsenko et al., 2011; Pruszynski

et al., 2011).

Lesions of the corticospinal tract (CST) cause impairments

in the execution of over-learned dexterous movements, both of

prehension in rodents, cats, and primates (Lawrence and

Kuypers, 1968; Martin and Ghez, 1993; Ropper et al., 1979;

Whishaw, 2000), and in the ability tomake visually guided predic-

tive modifications to the locomotor pattern in cats (Drew et al.,

1996). These impairments are in stark contrast to lesions of stria-

tal output, which have surprisingly little effect on execution of

well-learned movements when such lesions have been pro-

duced in songbirds, monkeys and humans (Desmurget and

Turner, 2010; Obeso et al., 2009; Stepanek and Doupe, 2010;

York et al., 2007). After lesions of M1 or the CST, rodents

(Whishaw et al., 2008), primates (Hoffman and Strick, 1995),

and humans compensate with lower-level synergies (Twitchell,

1951). It is interesting to ask whether the ability to find a useful

compensatory strategy is itself motor cortex dependent. In

anurans (frogs and toads), movements are initiated from the

midbrain not the forebrain (Abbie and Adey, 1950). It is notable

that despite no significant cortical role in the planning or control

of movement, anurans are capable of learning new prey-

catching behavior after hypoglossal nerve transection through
concatenating pre-established synergies—mouth opening,

neck extension, and body lunge (Corbacho et al., 2005). It could

be conjectured that this process can be accomplished by BG

connections with the brainstem.

One of the main contentions of this review is that it is neces-

sary to distinguish between learning ‘‘what’’ from learning

‘‘how.’’ Within this framework, we reserve the term skill for the

ability to improve the quality of execution rather than selecting

correct actions. For example, faster and more accurate hitting

of a particular sequence of piano keys is skill, whereas knowing

which sequence of keys you are meant to hit and doing so slowly

is not. A large amount of evidence suggests that these improve-

ments in skill are accompanied by plasticity in M1, i.e., skill

learning-related changes occur in the same place from which

baseline dexterous control originates. In humans, the duration

of impairment in dexterous finger movements is correlated with

lesion volume (Darling et al., 2009). Improvement in the speed

and accuracy of sequential finger movements correlates with

increased BOLD activation in M1 (Karni et al., 1995; Stagg

et al., 2011), is enhanced by transcranial direct current stimula-

tion over M1 (Classen et al., 1998; Reis et al., 2009; Stagg

et al., 2011) and inhibited by repetitive transcranial magnetic

stimulation over M1 (Muellbacher et al., 2002). In a recent

study it was shown that TMSwasmuchmore likely to elicit piano

playing-like movements in skilled pianists than in controls, which

suggests that M1 can encode representations of novel abilities

acquired through practice (Gentner et al., 2010).

Further evidence for the claim that learning of motor skill

results from changes in representation in motor cortex comes

from experiments in rats. In a specially designed reach to grasp

task, performance improvements are accompanied by various

structural changes in M1 (Whishaw and Pellis, 1990). It has

also been shown that the signal-to-noise ratio in spiking M1

neurons improves with practice on a reach-to-grasp task (Kargo

and Nitz, 2004). Recently it has been shown that destroying

dopaminergic projections to motor cortex completely abolishes

skill acquisition (Hosp et al., 2011), which suggests that a specific

kind of learning (skill) needs to take place in M1 directly. Large

lesions to motor cortex lead to permanent qualitative changes

in skilled reaching, with recovery mediated through compensa-

tion (Metz et al., 2005; Whishaw et al., 2008). In contrast, small

strokes in motor cortex lead to significant recovery of premorbid

prehension kinematics (Gonzalez and Kolb, 2003). This recovery

seems to be mediated by plasticity in peri-infarct cortex, with

structural changes very similar to those described after reach

training in healthy rats. Similar findings have been made in the

squirrel monkey (Nudo et al., 1996). Thus M1 is necessary for

recovery of previously acquired skills after small cortical lesions

and acquisition of new skills, likely using very similar plasticity

mechanisms. All these results taken together suggest that if skill

is considered the ability to execute better movements of a given

type rather than selecting the right sequence of movements

without emphasis on their quality, then the motor cortex is

necessary if not sufficient. It is notable that simply repeating

a movement stereotypically that does not require a skill change

does not lead to map changes in motor cortex (Plautz et al.,

2000). Finally, it should be emphasized that our contention

that M1 is the necessary structure for learning skilled execution
Neuron 72, November 3, 2011 ª2011 Elsevier Inc. 473
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does not preclude M1 also being the location for the represen-

tation of stereotypies that are learned initially through BG-

dependent processes. This ‘‘transfer’’ idea is favored by some

investigators and supported by the decreasing LMAN depen-

dence of learned songs in the songbird (Ölveczky et al., 2011).

Conclusions
Here, we have briefly described experiments across humans and

model systems in order to seek unifying functional principles with

respect to the roles of the cerebellum, basal ganglia, and primary

motor cortex in motor learning. Recently, a similar but more

general computational synthesis of these areas has been pro-

posed (Doya, 1999). From an evolutionary perspective, it ap-

pears that the structures of the basal ganglia and cerebellum

have been highly conserved and predate the development of

sensorimotor cortex in mammals, which suggests that the

computational role of these subcortical structures may not

have changed but their connections evolved to also target cortex

and not just the brainstem.

The cerebellum is critical for adaptation, which can be defined

as learning of a forward model to reduce sensory prediction

errors (Shadmehr et al., 2010). The difference between the role

of the cerebellum for limb movements, where it has no access

to motor neurons, versus in the case of eye movements, where

the cerebellum could also potentially act as a controller, needs

further investigation (Medina, 2011). The role of the BG remains

contentious but almost all the studies we reviewed tested some

kind of sequence task and can be subsumed under the idea of

action selection and instrumental conditioning. A current idea

is that the BG injects variability for exploration and then as the

best movement is converged upon, variability is reduced and

stereotypy and automatization ensue (Costa, 2011). Quality of

movement execution, i.e., motor skill, is not explained by this

framework and has not been the focus of these studies, although

in a few studies, striatal lesions have been shown to impair

tasks that can be considered tests of motor skill (Costa et al.,

2004; Wächter et al., 2010). Motor skill, faster and more precise

movements compared to baseline, has been surprisingly under-

studied, compared to either adaptation or selection of sequential

actions, but to the degree that it has been studied, M1 appears

to be a necessary structure. The implication of this framework

is that skill may be a late development evolutionarily. Adaptation

and learning to select the right actions from a hard-wired reper-

toire of synergies might suffice both for the vast majority of

animals and for eye movements in primates.

Where to go from here? One fruitful direction would be for

investigators using particular model systems with particular

behavioral tasks to take a look across at their colleagues, pred-

icated on the assumption that anatomical homology allows for

experimental and conceptual borrowings. Of particular interest

is to ask how error-based and reward-based processes combine

during motor learning, especially as anatomical connections

between the cerebellum and the basal ganglia have recently

been described (Hoshi et al., 2005). We finish with a few sugges-

tions for future directions: (1) rodent models could potentially be

developed that combine the finer-grained kinematic analysis of

the rat reach-and-grasp task (Whishaw et al., 2008) with a

sequential action selection requirement. (2) Human and primate
474 Neuron 72, November 3, 2011 ª2011 Elsevier Inc.
studies of sequence learning could pay closer attention to

movement quality as well as sequence order, i.e., start to study

motor skill with quantitative kinematic analysis. Suggestions (1)

and (2) could help characterize the precise nature of the interac-

tion between the BG and M1 during skill learning. (3) Rodent

models of limb adaptation could be developed. (4) Rodent

models of stroke could test the hypothesis that recovery is motor

cortex dependent but that compensation requires exploration of

spared movements and so might be BG dependent. In many of

these proposed studies, a double lesion approach could be

very informative.
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