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2010. First published March 31, 2010; doi:10.1152/jn.01089.2009. When
a new sensorimotor mapping is learned through practice, learning
commonly transfers to unpracticed regions of task space, that is,
generalization ensues. Does generalization reflect fixed properties of
movement representations in the nervous system and thereby limit
what visuomotor mappings can and cannot be learned? Or does what
needs to be learned determine the shape of generalization? We used
the broad generalization properties of visuomotor gain adaptation to
address these questions. Adaptation to a single gain for reaching
movements is known to generalize broadly across movement direc-
tions. By training subjects on two different gains in two directions, we
set up a potential conflict between generalization patterns: if gener-
alization of gain adaptation indicates fixed properties of movement
amplitude encoding, then learning two different gains in different
directions should not be possible. Conversely, if generalization is
flexible, then it should be possible to learn two gains. We found that
subjects were able to learn two gains simultaneously, although more
slowly than when they adapted to a single gain. Analysis of the
resulting double-gain generalization patterns, however, unexpectedly
revealed that generalization around each training direction did not
arise de novo, but could be explained by a weighted combination of
single-gain generalization patterns, in which the weighting takes into
account the relative angular separation between training directions.
Our findings therefore demonstrate that the mappings to each training
target can be fully learned through reweighting of single-gain gener-
alization patterns and not through a categorical alteration of these
functions. These results are consistent with a modular decomposition
approach to visuomotor adaptation, in which a complex mapping
results from a combination of simpler mappings in a “mixture-of-
experts” architecture.

I N T R O D U C T I O N

Generalization, the transfer of learning to novel conditions,
is a common property of both perceptual and motor learning
(Poggio and Bizzi 2004). When subjects learn a new sensori-
motor transformation by making reaching or pointing move-
ments to a set of training targets under altered visual feedback,
movements to untrained directions or in a different region of
the workspace may be affected by training. Generalization can
be measured for specific task parameters, such as movement
amplitude or direction, and may be narrowly or broadly tuned
to those parameters. Narrow generalization is seen in adapta-
tion to visuomotor rotation, in which subjects guide a computer
screen cursor to a visual target and adapt to a rotation of the
cursor’s direction relative to hand direction: training in one
direction generalizes to a limited range of neighboring direc-
tions (Krakauer et al. 2000; Pine et al. 1996). Similarly,
adaptation to perpendicular perturbing forces transfers to a
limited range of adjacent directions (Donchin et al. 2003;

Gandolfo et al. 1996; Mattar and Ostry 2007). Other types of
adaptation, on the other hand, exhibit broad generalization
(Bedford 1989; Ghilardi et al. 1995; Krakauer et al. 2000;
Vetter et al. 1999). Adaptation of visuomotor amplitude gain,
which requires learning a new ratio between visually perceived
and actual movement amplitude under altered visual feedback,
generalizes broadly across movement direction: at least 60% of
adaptation in the trained direction transfers to movements in all
other directions (Bock 1992; Krakauer et al. 2000; Pine et al.
1996; Vindras and Viviani 2002).

Generalization can provide insight into the structure of
representations, such as sensorimotor maps, in the nervous
system (Donchin et al. 2003; Poggio and Bizzi 2004; Shad-
mehr 2004). A common approach is to record movements not
experienced during learning and construct a generalization
pattern (GP), also referred to as a generalization function. This
pattern is taken to inform about stable aspects of representa-
tions, separate from learning. The difference in GP between
rotation and gain adaptation, for example, has been interpreted
as evidence of polar vector coding of movement (amplitude
separately from direction) in the motor system (Bock 1992;
Krakauer et al. 2000; Vindras and Viviani 2002): if movement
amplitude and direction show different patterns of generaliza-
tion, they must be encoded separately. Similarly, GPs in force
field learning suggest a specific form of representation for an
internal model of arm dynamics that maps a desired arm
configuration to the forces necessary to achieve that configu-
ration (Shadmehr 2004). This interpretation attributes to GPs
properties of how movements are represented in the nervous
system and suggests that generalization may guide learning.
For example, in adaptation to force perturbations that are
perpendicular to the movement, generalization of adaptation in
one direction to neighboring directions is thought to facilitate
learning in other directions (Donchin et al. 2003).

Generalization, however, may also reflect the learning pro-
cess itself. The observed GP may be determined by the specific
training set used to practice and by specific features of the
adaptation process. Indeed, generalization may be a by-product
of function approximation, which could be the nervous sys-
tem’s approach in learning certain mappings (Poggio 1990;
Schaal and Atkeson 1998). In this framework, practicing
movements in closely spaced directions would be expected to
result in narrow generalization, whereas widely spaced training
directions would yield wide generalization, simply as a reflec-
tion of the learning process and differences in the set of
training movements. The resulting GP would then reflect
environmental complexity (Mattar and Ostry 2007; Thorough-
man and Taylor 2005) and it would be difficult to make
inferences about stable representations based on GPs.

Whether generalization aids or hinders learning remains
unclear. In previous studies, broad generalization was typically
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associated with difficulty in learning complex mappings (Bed-
ford 1993; Bock 1992). However, several studies also demon-
strated that it is possible to learn mappings of greater complex-
ity than generalization would seemingly allow (Ghahramani
and Wolpert 1997; Hwang et al. 2003; Thoroughman and
Taylor 2005). We therefore set out to investigate the relation-
ship between generalization and learning by studying visuo-
motor adaptation for a mapping known to have very broad
generalization, i.e., visuomotor amplitude gain for reaching
movements. We imposed different gain adaptation require-
ments in different directions. Due to the broad nature of gain
generalization across directions, the task imposed a potential
conflict between adaptation requirements and generalization. If
generalization of gain adaptation reflects the structure of move-
ment amplitude representation, then broad generalization may
indicate a limit on how finely amplitude can be encoded across
directions. It may thus not be possible to adapt to two gains in
different directions. Training in one direction would be accom-
panied by generalization to all other directions, which would
be expected to interfere with learning a different gain in
another direction. If generalization is a consequence of learn-
ing, on the other hand, it should be possible to fully learn
different gains in different directions. A new GP would be
expected to emerge, as dictated by the specific training direc-
tions and their associated gain values.

M E T H O D S

Subjects

We tested 60 healthy adult subjects without known neurologic
abnormalities or depression. Six individuals were excluded before any
formal analysis because of idiosyncratic motor behavior: when the
gain perturbation was applied, they verbally expressed concern that
“something was wrong” with the experiment, and the variance of their
movement speed and amplitude immediately increased to values
greater than triple those at baseline. Due to this large increase in
movement variability across all directions, we considered their data
not interpretable. All results and analyses in this report were obtained
from the remaining 54 subjects (33 female, 49 right-handed; mean
age � SD: 26.6 � 5.6 yr). All subjects provided written informed
consent. Testing was performed in accordance with the Declaration of
Helsinki and with the approval of Columbia University’s Institutional
Review Board.

Apparatus

Figure 1 illustrates the experimental setup. Subjects sat at a glass-
surface table (Fig. 1A) with their dominant arm strapped onto a
light-weight supporting sled that hovered on three air cushions created
by compressed-air jets. This apparatus allowed frictionless planar
motion of the upper arm and forearm (Fig. 1B). The wrist was
immobilized with a splint. A magnetic system (“Flock of Birds”;
Ascension Technology, Burlington, VT) recorded position of hand,
elbow, and shoulder at 120 Hz using two 6-degree-of-freedom sen-
sors. Subjects viewed the reflection of a computer’s liquid crystal
display (LCD) in a mirror suspended halfway between the subject’s
hand and the LCD, so that the virtual image of the display in the
mirror was in the plane of arm motion. The mirror blocked the
subjects’ view of their arm and hand. Custom software collected hand
position data and controlled the computer display and could display
current hand position as a screen cursor (filled black circle, 0.5 cm
diameter) either to match the hand’s true location or at an altered
location based on experimental conditions.

Task

The reaching-like task was to make planar arm reversal movements
(Schmidt et al. 1988) from a center position to a circular target placed
along one of 12 directions separated by 30° in a circular arrangement
(Fig. 1C). Before each trial, subjects positioned the screen cursor into
a “start” circle (1 cm diameter). The origin of the workspace was
defined as the center of the start circle. Each trial started after the
subject had maintained the cursor inside the start circle for 750 ms, at
which point a target (2 cm diameter) appeared. Subjects were in-
structed to move the hand, when ready, to the target and back in a
single motion, without corrections. No requirement was imposed for
reaction time: after target appearance, the computer allowed subjects
to take as long as they wanted to start and complete each movement.
Subjects were first familiarized with the task by making four move-
ments to each of the 12 possible targets under continuous visual
guidance, i.e., with the cursor always on. For all subsequent move-
ments, the cursor disappeared as soon as the hand exited the start
circle and subjects received no visual feedback during the movement.
For movements in a training direction (�1, �2; Fig. 1C), subjects
received endpoint feedback in the form of a white square (screen

Sensor

LCD

Mirror

A

B

Elbow Hand

Glass surface

C

θ1

θ2

Glass surface

FIG. 1. Experimental apparatus. A: subject sits with right arm supported
over glass surface and looks in the mirror, which reflects the computer display
(LCD). The upper arm magnetic sensor is visible. B: side view of apparatus.
Arm is strapped to sled, which glides on air jets. Not visible: hand (wrapped
in splint to prevent wrist motion); forearm sensor (attached to bottom of
air-sled); magnetic transmitter (below table). C: task workspace, showing start
circle (filled circle) and target locations (open circles) in experiment 1. Thick
circles, targets in training directions (�1, �2), for which endpoint feedback was
provided. Thin circles, probe targets (no feedback). Target diameter, 2 cm;
distance from start circle to probe targets, 10 cm.
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endpoint, S) that appeared, without delay, when the hand reversed
direction at the end of the outgoing portion of the movement. S
remained visible for 2 s.

The screen endpoint’s location was always along the same direction
as the hand’s actual direction. The screen endpoint’s distance RS from
the origin was manipulated relative to the distance of the hand’s
endpoint on the workspace RH, by setting an imposed gain Gi. This
was defined as the ratio between the screen endpoint’s and the hand’s
distances from the origin or how far the endpoint appeared for a given
hand movement

Gi � RS ⁄ RH (1)

Values of Gi �1 amplified the cursor’s motion on the screen, which
caused the cursor to overshoot the target, whereas values of Gi �1
reduced the amplitude of cursor movement, leading to undershoot. No
endpoint feedback was given after movements to any of the other
targets (probe directions). There were either one or two training
directions, depending on the specific group and experiment (Table 1).
Each training direction had two targets at distances 8 and 12 cm from
the start circle, whereas the probe directions each had one target, at a
distance of 10 cm (Table 1, Fig. 1C). For left-handed subjects, the
arrangement of start circle and targets was flipped about the y-axis.

After initial familiarization, each testing session for a given subject
consisted of the following three blocks of movements, with roughly
4–5 min of rest between each block.

Baseline (BL): movements to targets in the training and probe
directions. For movements to training targets, endpoint feedback was
veridical, i.e., with imposed gain Gi � 1. No visual feedback was
provided for probe targets. The target presentation sequence was crafted to
maintain visuomotor calibration and prevent the possibility of drift
that might result from the absence of visual feedback. To accomplish
this, probe targets were presented only one at a time, every one, two,
or three trials to training targets. This resulted in twice as many
movements to training directions as there were to probe directions (50
probe � 100 training in double-gain conditions; 55 probe � 110
training in single-gain conditions). Over the course of the block of
trials, each probe target was preceded by all possible training targets
at least once and with equal probability. The training targets them-
selves were also balanced so that they appeared in equal numbers
across the block. There were no consecutive presentations of the same
target.

Training (TRN): movements to training directions only. After eight
movements with Gi � 1, the imposed gain was changed to a new
value for the remainder of the block. This perturbation changed the
relationship between movement amplitude and endpoint location on
the display and varied depending on the group being tested (Table 1).
Subjects made 60 movements in each training direction (total: 60 for
single-gain conditions; 120 for double-gain conditions). For double-
gain subjects, movements to the two targets in each of the two
directions were interleaved in a balanced design, covering each
permutation of the four targets. Therefore every four movements, all
possible targets were covered (two amplitudes for each of two direc-

tions). This design was intended to minimize the possibility that a
movement’s position in a sequence might serve as a cue for its
amplitude.

Testing (TEST): the sequence of movements was identical to that in
the baseline block, but with the newly learned gain(s) imposed on
feedback to training targets. Specifically, endpoint feedback was
provided only for targets in the training directions. Movements to
probe directions were performed with no visual feedback. Due to the
absence of visual feedback, the gain observed for the probe directions
necessarily reflected generalization, that is, the effect of learning new
gains in the training directions.

In all subject groups, assignment of each gain to one of the two
possible training directions was evenly balanced across subjects
(Table 1). Two distances were used for training targets to emphasize
the nature of gain changes as changes in amplitude relationships. The
distance of the probe target was chosen as halfway between the two
training distances to minimize possible idiosyncratic effects of seeing
endpoint feedback at a specific location. Distances for groups S6, D86
were shorter than those for the other groups, to avoid the possibility
of the required movements approaching the mechanical limit of arm
extension in the 0.6 gain condition.

Experiments

Table 1 summarizes the subject groups and conditions for each
experiment. In experiment 1 we tested whether the motor system can
adapt to two different gains in different directions. Two single-gain
subject groups adapted to either 0.8 or 1.5 in a single training
direction. A third group of subjects simultaneously learned the two
gains in two different directions. Experiments 2 and 3 were designed
to test specific hypotheses generated by the results of experiment 1. In
experiment 2 we trained a new group of subjects to learn two gains
that were both �1. A new single-gain comparison group was also
tested. The training directions in experiment 2 were the same as those
in experiment 1. In experiment 3, another group of double-gain
subjects adapted to a double-gain with less separation between train-
ing directions. The gains were the same as those in experiment 1, but
the training targets in experiment 3 were separated by 60°, compared
with 150° in experiment 1. The testing protocol was the same in all
experiments (see Task). Further details are described later in RESULTS.

Gain values were assigned to training directions as follows (Table
1). The general principle was to counterbalance the assignment of
training directions within each group, to avoid possible direction-
specific confounding effects (e.g., idiosyncrasies of movement ampli-
tude control for specific directions). For example, in the single-gain
conditions of experiment 1, the training direction was �150° for half
the subjects in each group and 60° for the remaining subjects.
Similarly, in the double-gain condition of experiment 1, half the
subjects were assigned training directions �150° for gain 1.5 and 60°
for gain 0.8 and the other half 60° for gain 1.5 and �150° for gain 0.8.

Because gain-direction pairings differed between two halves of
each subject group, we prepared data for analysis by reassigning

TABLE 1. Subject groups and testing conditions

Training Direction, deg Gain Value Target Distance, cm

Group Experiment(s) Gain Condition n 1 2 1 2 Training Probe

S8 1, 2, 3 Single 7 60 (�150) — 0.8 — 8, 12 10
S15 1, 3 Single 7 �150 (60) — 1.5 — 8, 12 10
D815 1 Double 12 60 (�150) �150 (60) 0.8 1.5 8, 12 10
S6 2 Single 7 �150 (60) — 0.6 — 5, 9 7
D86 2 Double 11 60 (�150) �150 (60) 0.8 0.6 5, 9 7
D815-nea 3 Double 10 60 (120) 120 (60) 0.8 1.5 8, 12 10

n, number of subjects. Training direction: first value used for half the subjects in a given group, indicating standardized direction (see METHODS); second value
(in parentheses) used for the remaining subjects.
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training directions for half the subjects in each group as follows. One
set of gain-direction pairs was chosen as standard in each experiment
(numbers outside parentheses in the Training Direction column of
Table 1): �150° for gain 1.5, 60° for gain 0.8 in experiment 1; �150°
for gain 0.6, 60° for gain 0.8 in experiment 2; 120° for gain 1.5, 60°
for gain 0.8 in experiment 3. For half the subjects in each group, the
true gain-direction assignments were already the same as the standard
directions. For the other half of subjects in each group (those whose
assigned directions are listed in parentheses in Table 1), directions
were reassigned to a standardized direction so that directions for a
given imposed gain were the same for all subjects in the group. This
standardized direction was calculated as � � �1·�= � b, where � is
the reassigned direction, �= is the actual direction, and b � �90° for
experiments 1 and 2 and 180° for experiment 3. Similar reassignments
were made for single-gain conditions. For example, if a double-gain
subject in experiment 1 was in the half-group that was trained with
gain 0.8 at �150° and 1.5 at 60°, the preceding transformation yielded
a direction of �150° for gain 1.5 and 60° for gain 0.8, which matched
the gain-direction pairs for the other half of the group’s subjects. Gain
values could thus be analyzed and plotted against a standard set of
directions for all subjects in each experiment. In the remainder of this
article, including all figures, � refers to these standardized directions.

Data analysis

Hand position was stored and filtered off-line with a zero-phase-lag
Butterworth low-pass filter (cutoff frequency: 8 Hz). Movement
amplitude was measured as the distance from the start circle to the
reversal point (where radial velocity changed sign from positive to
negative).

The main measure of interest in our study is the visuomotor gain
used by the brain to control movement amplitude when planning a
movement to a target of a certain distance. This can be inferred from
the amplitude of a movement to a visual target whose relationship
defines the movement gain Gm. For a movement with amplitude RH to
a target at distance RT, the movement gain is defined as Gm � RT/RH.
Note that the imposed gain Gi is the relationship imposed by the
computer between how far the hand moves and how far the screen
endpoint S appears on the display. The movement gain Gm reflects the
nervous system’s estimate of this relationship. The imposed gain
answers the question “How far did the endpoint appear for a given
hand movement?” whereas the movement gain answers the question
“For a given target distance, how far did the hand move?” At baseline,
the imposed gain is 1. If a target appears at 10 cm and the subject
makes a 10-cm movement, then the screen endpoint appears at 10 cm
(Gm � 1). If the imposed gain suddenly changes to 0.8, a 10-cm target
still elicits a 10-cm hand movement (Gm still equals 1 before adap-
tation), but this 10-cm movement now places the screen endpoint at 8
cm (Gi � 0.8). After successful adaptation, the hand would move 12.5
cm when aiming to a 10-cm target, which means that movement gain
has changed to 0.8, matching the imposed gain of 0.8.

We calculated an adjusted version of movement gain to remove
baseline differences between imposed and movement gain. In the BL
block, values of Gm exhibited slight systematic deviations from 1
across directions and across subjects. These reflect small, subject-
specific direction-dependent amplitude biases in baseline movement
execution. In the present study we were interested in measuring
subjects’ ability to adjust to a change in imposed gain relative to their
own baseline, regardless of these individual and directional biases.
Therefore we adjusted movement gain by subtracting any direction-
dependent offset between target and movement amplitude that might
be present at baseline and defined this quantity as the observed
gain Go

Go � Gm � K (2)

where K � (Gm � Gi)BL is the difference between imposed and
movement gains in the baseline block. This removes any baseline

overshoot or undershoot associated with specific subjects or move-
ment directions. Go thus purely records the quantity of interest in our
study, that is, the amount of visuomotor adaptation, as the change in
amplitude gain from baseline.

For each gain learned in a training direction, percentage adaptation
was calculated as the fraction of change from baseline (i.e., 1) for the
observed gain compared with the imposed gain: percent adaptation �
[(Go � 1)/(Gi � 1)] � 100. Percent adaptation served as a measure of
adaptation to each individual gain in all conditions. Note that percent
adaptation can assume negative values. This would occur if the
observed gain were to change in the opposite manner of the imposed
change, e.g., observed gain decreasing to �1 when the imposed
change is 1.5. In the double-gain condition, we were also interested in
recording how well subjects learned to disambiguate two gains. For
double-gain subjects, we therefore calculated percent separation as
the ratio of the difference between the observed gains and the differ-
ence between the imposed gains: percent separation � [(Go2 � Go1)/
(Gi2 � Gi1)] � 100. This was calculated for each subject by pairing
successive trials to different directions. A trial in one direction was
paired with the next trial, which was always in the other direction.

Statistical comparisons were performed using two-sample t-test
with unequal variance. Significance level was set at � � 0.05.

MODELS. We developed mathematical models for five possible
mechanisms through which observed patterns of generalization in
double-gain conditions can arise. These are introduced in the RESULTS

and are described in detail in the APPENDIX.

R E S U L T S

Subjects were able to learn two gains in two directions

In experiment 1 we tested whether the motor system can
adapt to two different gains in different directions. Subjects
were able to accomplish this task (Fig. 2). The outgoing
portions of sample trajectories for a single subject are shown in
Fig. 2A. Trajectories were out-and-back, as instructed, and had
double-peaked velocity profiles and no clear evidence of sub-
movements, as is characteristic of reversal movements (Got-
tlieb 1998). Figure 2B shows movement endpoints of an
individual subject for targets in the two directions for which
endpoint feedback was given (FB directions) before and after
training. In the baseline condition (Fig. 2B, “Before”) end-
points were clustered near the centers of the targets. In the test
condition (Fig. 2B, “After”) endpoints were clustered beyond
the original targets in the 0.8 gain direction and short of the
original targets in the 1.5 gain direction. This reflects success-
ful learning of the two different gains.

We compared the amount of adaptation in both single- and
double-gain conditions (Fig. 3). Most double-gain subjects
clearly learned different gains for different directions (Fig. 3A,
open triangles). Results for two double-gain subjects differed
considerably from those of the rest of the group: one subject
had poor adaptation to both gains and the other adapted well to
the 1.5 gain but had minimal adaptation to the 0.8 gain (Fig.
3A, filled triangles). We excluded these two subjects from
further analysis because their learning results for the 0.8 gain in
the double-gain condition were clear outliers (Mahalanobis
distance �2SD from remainder of group). Moreover, these
subjects’ data suggested a qualitatively different type of learn-
ing, in that they adapted to one gain rather than two. Most of
the remainder of the analysis was aimed at examining the
mechanism by which two different gains are learned concur-
rently and thus was performed without these two subjects’
data.
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Figure 3B expresses amount of learning as percent adapta-
tion. For the 0.8 gain percent adaptation was not significantly
different between single- and double-gain groups (double-gain,
94 � 15%, mean � SD; single-gain, 101 � 18%; P � 0.39;
two-sample t-test with unequal variances). Percent adaptation
to the 1.5 gain was slightly less in the double-gain than that in
the single-gain condition (double-gain, 76 � 6%; single-gain,
88 � 6%; P � 0.001).

Learning was slower in the double-gain condition

Adaptation followed a time course with a gradual, mono-
tonic progression (aside from trial-by-trial noise) from the
baseline gain to the imposed gain, in both single- and double-
gain conditions (Fig. 4). At the beginning of training, the newly
imposed gain induced visual errors (undershoot for the 0.8
gain; overshoot for the 1.5 gain), which led to a gradual change
of the subjects’ own gain. Adaptation was considerably slower
in the double-gain condition than that in the single-gain con-

dition (Fig. 4, A and B). Single-gain subjects, on average,
adapted fully to the new gain within 8–12 movements (Fig. 4,
A and B, open circles). Double-gain subjects, on the other hand,
required the full training session of 60 movements to reach
nearly full adaptation (Fig. 4, A–C, closed triangles). Mean
percent adaptation, averaged over the first 12 trials of the TRN
block, was 92 � 7% (mean � SD) in the group learning the 1.5
single gain versus 27 � 6% in the group learning the 1.5 gain
in the double-gain condition (P � 0.0001; two-sample t-test
with unequal variance) (Fig. 4A). For the 0.8 gain, mean
percent adaptation in the first 12 trials was 38 � 12% for single
gain and �19 � 10% for double gain (P � 0.001). The
negative value resulted because, on average, gain for the 0.8
direction increased to a value �1 in the first few movements of
double-gain training (Fig. 4B). A single-plot view of double-
gain learning can be obtained by calculating percent separation
between the two gains (see METHODS) for double-gain condi-
tions (Fig. 4C). This quantity captures the relative disambigu-
ation of the two gains, regardless of whether adaptation was
greater to one gain or the other.

A

B

FIG. 3. Adaptation in single- and double-gain conditions in experiment 1.
A: observed gain (Go) in TEST condition, after adaptation to imposed gain of
1.5 or 0.8. Plotted are individual subject values for single-gain (circles) and
double-gain (triangles) conditions and mean group values (horizontal bars).
Solid line, baseline value of imposed gain (Gi); dashed lines, imposed gain
during training in respective conditions. B: percent adaptation in single- and
double-gain conditions (group mean � SD). Categories indicate gain imposed
during training Gi.

2

A

B

FIG. 2. Example of double-gain learning. A: sample movement trajectories
(outgoing portion only) to each target for a single subject. Small squares
indicate endpoint shown on display for movements in training directions.
Large squares indicate areas that are magnified in B. B: endpoints for a single
subject’s movements in training directions (�1, �2), before and after training in
double-gain condition of experiment 1. Left panels refer to baseline (BL)
condition (imposed gain � 1); right panels refer to testing (TEST) condition,
in which imposed gain was 0.8 for direction �1 (top right) and 1.5 for direction
�2 (bottom right). Circles, endpoints for movements to 8-cm targets; triangles,
endpoints for 12-cm targets. Arcs indicate distance where actual hand endpoint
must be for screen endpoint feedback to appear inside the target. Calibration
bars in A and B: 1 cm.
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Learning single and double gains resulted in
direction-dependent generalization

As observed in previous studies (Bock 1992; Krakauer et al.
2000; Pine et al. 1996; Vindras and Viviani 2002), adaptation
to a single gain resulted in broad generalization across direc-
tions. However, as also reported in previous studies, transfer to
other directions was not 100% and instead exhibited some
dependence on direction. The GP associated with the 1.5 gain
(Fig. 5A) had a broad peak (value 1.44) with symmetric
decrement on each side of the training direction. Gain was
�1.2 for all directions, which indicates that �45% of the
learned gain, as a deviation from baseline (1.0), was transferred
to all directions. The GP for the single 0.8 gain (Fig. 5B) was
broader than that for the 1.5 gain, with an inverted peak (value
0.8) surrounding the training direction and gradual drop-off to
0.88 in the opposite direction. Thus in spite of this dependence

of generalization on direction, �60% of the learned gain
(deviation from 1.0) was transferred to all directions and thus
there was considerable generalization to all directions in both
single-gain conditions.

The GP associated with learning two gains simultaneously
was characterized by a peak and a trough in the training
directions (Fig. 5C), which were narrower than those in the
original single-gain GPs. These could also be regarded as two
peaks, one deviating upward and the other downward from
baseline gain values. Our choice of training directions yielded
two regions of angular separation between training directions,
one smaller (210° � 60° � 150°) and one larger [60° �
(�150°) � 210°; Fig. 5C]. In the region of smaller separation,
the GP made a steep monotonic transition between the 0.8 and
1.5 gain directions. In the larger region, there were three
directions where the gain was close to 1 and where there was
greater intersubject variability (Fig. 5C). From this flat region,
the GP gradually changed toward its value at the respective
trained direction. These features gave the GP the appearance
of two peaks, one positive and one inverted, roughly centered at
the training directions. The peaks appeared approximately
symmetric (at least in the group average values, although not in
their variability), falling off to 1 (i.e., the baseline value) at a
distance of 60–90° from the trained direction. Visual inspec-
tion of individual traces shows that the average GP reflects the
general shape of individual subjects’ GPs. The region of
greatest intersubject variability (directions �90 to 0°) corre-
sponds to the angular range of greater separation between
training directions. Notably, this region of variability does not
reflect haphazard disruption of generalization across subjects.
The general shape of two opposite peaks and a flat central
region was observed in all subjects. Variability in the range
�90 to 0° is explained by the fact that the flat central region of
the average trace reflects gain that is greater than baseline (1)
for 8 of 10 subjects and �1 for the remaining two subjects.

Note that a change of gain in the probe directions (all
directions except the training directions; Fig. 5) between base-
line and test conditions could reflect only the effects of gen-
eralization. No visual feedback to the probe targets was pro-
vided during baseline or testing and no movements to the probe
targets were made during training. Therefore our “null hypoth-
esis” is that gain for the probe targets should remain at baseline
values throughout the study. Any change of gain values in the
probe direction could only reflect transfer of learning of the
new gains in the training directions.

The results of experiment 1 demonstrate that broad general-
ization is not an impediment to learning. If single-gain GPs had
been fixed and had successfully interfered with each other,
then, given the interleaving of equal numbers of trials in each
training direction, gain would be expected to reflect the aver-
age of the two single-gain GPs. This is not what happened.

Did double-gain adaptation reflect de novo generalization?

The double-gain GP observed in experiment 1 (Fig. 5C)
suggested that there may be no special relationship between
single-gain and double-gain generalization. We refer to this
possibility as de novo generalization, in the sense that the
motor system adopts a strategy dictated by the training set,
which may or may not be the same for single and double gain.
We considered two types of processes that might give rise to de

A

B

C

FIG. 4. Progression of adaptation in training (TRN) condition of experi-
ment 1. A: percent adaptation to imposed gain Gi � 1.5 is plotted against
training cycle (group mean � SD; 1 cycle � 4 trials). B: percent adaptation to
imposed gain Gi � 0.8. C: percent separation in double-gain condition, i.e.,
ratio of difference between observed gains in training directions and difference
between values of Gi (1.5, 0.8) in double-gain condition, �100%. In all panels:
open circles, single-gain condition; filled triangles, double-gain condition.
Note that cycles in A and B are not composed of consecutive movements, but
instead indicate 4 movements with a specific gain, 0.8 or 1.5.
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novo generalization and developed models to test whether
double-gain generalization is compatible with these possible
processes. Details of these models are given in the APPENDIX.

LOCAL LEARNING MODEL. First we considered a principle of
minimal change: when faced with two different gains in dif-
ferent directions, the nervous system adopts a strategy of local
learning. The baseline gain (value � 1 in all directions)
changes for those directions in which error is detected (the
training directions) and for closely neighboring directions. In
other words, a narrow-peaked function (Gaussian shape) de-
velops in the training directions due to local modification of
baseline gain (Fig. 6A, left). The neurophysiological motiva-
tion is that movement amplitude may be represented as a
population code by neurons with narrow directional tuning.
The width of the Gaussian is a preexisting property of move-
ment representation, determined by local wiring of neurons
encoding movements in the training direction. We estimated
the width of this Gaussian by fitting Gaussian functions to each
peak of the double-gain data (Fig. 5C). Their values were very
similar (45° for the 1.5 gain and 50° for the 0.8 gain) and we
chose their average (47.5°) as the SD of the Gaussian for this
model. The resulting predicted GP showed a good fit with the
observed double-gain GP (Fig. 6A, right, gray trace).

GLOBAL LEARNING MODEL. A second process through which
double-gain generalization could emerge de novo is through
smooth interpolation of gain values between those learned in
the training directions (Fig. 6B, left). This model is motivated
by the possibility that generalization reflects an assumption,
made by the nervous system, of regularity in spatial relation-
ships. The model assumes that the nervous system extracts
regularities (global features) from environmental signals and
exploits these regularities for efficient neural representations.
In the case of amplitude gain, everyday experience is domi-
nated by situations in which gain does not change with direc-
tion: when reaching for an object, for example, the distance

that the hand must travel is the same as the visually perceived
distance (in a three-dimensional, visually based representation
of space) between the hand and the object, and this relationship
is independent of direction. Such a regularity may be salient
enough to lead the nervous system to encode gain as indepen-
dent of direction. A principle of maximal smoothness (“allow
gain to change minimally across directions”) is one way to
obtain this type of coding. When faced with a second gain, the
principle would cause a “reluctance” to allow gain to change
with direction, leading to maximally smooth transitions from

B

C

A

FIG. 5. Patterns of generalization after single- and double-
gain training in experiment 1. Plotted is gain in TEST block as
a function of target direction (generalization pattern [GP]).
A: observed gain (Go) vs. target direction (relative to training
direction) in adaptation to single imposed gain of 1.5.
B: observed gain vs. relative target direction after adaptation to
single gain of 0.8. C: observed gain vs. standardized target
direction (see METHODS) in double-gain condition (solid black
trace with squares) imposed gain 1.5 in direction �150° and 0.8
in direction 60°. Horizontal axis range is �360° to better
illustrate shape of double-gain GP. Thin traces indicate double-
gain GPs for individual subjects. Dashed traces with triangles
and circles show single-gain GPs for gains 1.5 and 0.8, respec-
tively (same traces as in A and B, replotted against standardized
target direction). In all panels: vertical dashed lines, training
directions; gray shading, �1SD.

A

B

FIG. 6. De novo models hypothesized to account for double-gain GP
observed in experiment 1. Predicted and observed gain is plotted against
standardized target direction in the double-gain condition with imposed gain
values 1.5 (�150°) and 0.8 (60°). Vertical dashed lines, training directions.
A: local learning model. Left: model Gaussian functions centered on training
direction. Right: gain observed in double-gain condition of experiment 1 (black
trace with squares; same trace as in Fig. 5C) and predicted by model (solid gray
trace). Gray shading, �1SD. B: global learning model. Left: constraining
points (“knots”) for the smoothing spline function, set at values of observed
gain in training direction in double-gain condition. Right: GP predicted by
model. For detailed descriptions, see RESULTS and APPENDIX.
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one gain to the other. Neurophysiologically, a smooth repre-
sentation could arise from parsimony of neuron number. If we
hypothesize amplitude-tuned neurons with broad direction tun-
ing, then it would take more neurons to encode gain that varies
greatly with direction than to encode gain that varies little with
direction. Therefore a simpler network of such neurons would
be required if direction dependence of gain is smoother. The
model predicts gain values, for untrained directions, that pro-
duce a smooth transition between the two different gains. This
can be mathematically implemented by smoothing spline in-
terpolation, a curve-fitting procedure that minimizes curvature.
The resulting trace captures some features of the double-gain
GP (Fig. 6B, right). It does not predict the flat region in the
range of angles most remote from the training directions, but
the model trace still falls within the observed variability.

Both de novo models appeared able to explain results of
experiment 1. Although the local learning model yielded an
excellent fit, the global learning model could not be excluded.
Furthermore, although gain in directions away from the trained
ones remained at baseline, at least at the group level (direc-
tions: �60, �30, and 0°; Fig. 5C), gain in these directions also
exhibited greater intersubject variability. We therefore tested
these models in two further conditions.

Experiment 2 was designed to test the validity of the local
learning model. We trained subjects to learn two gains that
were both �1 (group D86, Table 1), in the same two training
directions as in experiment 1. Although in experiment 1 each
gain had opposite effects on cursor movement amplitude (one
reducing, the other magnifying), in experiment 2 both gains
reduced cursor amplitude. The local learning model predicted
that gain should remain around 1.0 at directions remote from
the training directions: the essence of this model is local
learning and there is no reason for gain to change from baseline
in directions that are outside the width of the local Gaussian
functions.

The double-gain GP for the D86 group shows full adaptation
to the 0.6 gain and slight overadaptation to the 0.8 gain, in their
respective training directions (Fig. 7A, squares). The observed
gain for all intervening directions was between 0.6 and 0.8.
Notably, gain was never between 0.8 and 1.0, in contrast to the
prediction of the local learning model (Fig. 7A, solid gray
trace). The other de novo model (global learning) predicted a
pattern more similar to the observed data, that is, intermediate
values between 0.6 and 0.8 throughout the double-gain GP
(Fig. 7A, dotted gray trace).

The results of experiment 2 exclude the local learning model
as an explanation of double-gain generalization. In experiment
3 we tested the validity of the global learning model. We
designed experiment 3 similarly to experiment 1, but with
training directions in closer angular proximity. Subjects were
trained in a double-gain condition with gains 0.8 and 1.5, as in
experiment 1, but the training directions were separated by
only 60°, compared with the 150° separation in experiment 1.

The global model made two predictions in this condition.
First, the resulting GP (Fig. 7B, dotted gray trace) should show
some amount of hypergeneralization. Bringing the training
directions closer increases the steepness of the transition be-
tween gain values at the training directions. The model pre-
dicted that the gain in directions on one side of each training
directions (on the side of greater separation between these)
would take on values further from baseline (1.0) than those

learned at the training directions, to maximize smoothness of
the GP (Fig. 7B). Second, the model predicted that the peaks
of the GP would shift away from the training directions. Indeed,
the model makes both of these predictions for any asymmetric
arrangement of training directions, i.e., for any pair of training
directions that are not 180° apart. However, for the specific
angular separation of training directions in experiment 3, the
model predicted hypergeneralization and shifting of peaks to
an extent well beyond the observed variability. Note that these
predictions are not affected by relaxing the smoothing spline’s
“rigidity” requirement: reducing the value of the smoothing
factor to �0.001 did not result in any appreciable change in the
predicted GP (lowest value tested: 0.00001).

Neither prediction of the global learning model was ob-
served. The double-gain GP observed in experiment 3 was
similar to that observed in experiment 1, but had asymmetric
peaks (Fig. 7B, squares). There was no hypergeneralization and
the peaks remained aligned with the training directions. There-
fore the data of experiment 3 strongly argue against the global
learning model.

The local learning model predicted that the local Gaussians,
whose width was estimated in experiment 1, would partially
blend into each other due to the closer separation between
training directions (Fig. 7B, solid gray trace). The prediction
error here is relatively small. However, an important deviation
from the data is the prediction of incomplete learning in one of
the training directions. Note that this model’s prediction is
shown here only for completeness’ sake because the local

A

B

FIG. 7. Predicted and observed GPs for de novo models in experiments 2
and 3. A: observed gain (black trace with squares; gray shading, �1SD) in
double-gain condition with gain values 0.8, 0.6 (experiment 2); gain predicted
by local learning model (solid gray trace); gain predicted by global learning
model (dotted gray trace). Vertical dashed lines, training directions. Note
deviation of local model’s prediction from observed gain in regions between
training directions. B: observed gain (black trace with squares) in double-gain
condition with gain values 1.5, 0.8 and training directions separated by 60°
(experiment 3); gain predicted by local learning model (solid gray trace); gain
predicted by global learning model (dotted gray trace). Note hypergeneraliza-
tion pattern predicted by global model.
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learning model was already invalidated by the results of ex-
periment 2.

Does spatial weighting of single-gain GPs better predict
double-gain generalization?

The de novo generalization models we considered failed to
explain the double-gain GPs in experiments 2 and 3. We
therefore considered the possibility that double-gain generali-
zation arises from combinations of single-gain GPs. Although
successful learning is incompatible with averaging of the two
single-gain GPs (the simplest type of combination), we con-
sidered other possible combinations of single-gain GPs with
weighting coefficients that are functions of direction. The
hypothesis behind these models (weighted combination mod-
els) was that single-gain GPs may represent special mappings:
the single-gain condition reveals a nonrandom mapping that is,
for whatever reason, selected by the sensorimotor system. If
such a mapping is somehow privileged, we asked whether it
might be preserved in the double-gain condition. A simple way
to achieve this would be through a weighted combination of
single-gain GPs. We analyzed two models of single-gain GP
combinations. Details are given in the APPENDIX.

INDEPENDENT SPATIAL WEIGHTING MODEL. Given that different
gains are learned in different directions, one possible strategy
is to modulate the single-gain GPs by direction. In the presence
of conflicting influences on gain in intermediate directions by
single-gain GPs, a weighting process could assign decreasing
importance to each GP for directions increasingly removed
from the trained direction. We thus hypothesized that single-
gain GPs could be combined after being spatially weighted
across directions. We refer to this model as “independent”
spatial weighting because each weighting function is assigned
to a specific single-gain GP, without regard to the training
direction for the other gain. We chose cosine as the form of the
weighting functions because cosine is a simple form of gradual
change between maximum and minimum values across direc-

tions. Cosine tuning of neuronal activity is encountered in
several cortical areas and thus is a plausible computation for
the brain to perform. We hypothesized two cosine weighting
functions with peaks in the 1.5 and the 0.8 gain directions (Fig.
8A, left) and multiplied these by the single-gain GPs (see
APPENDIX). The result was weighted versions of each single-
gain GP (Fig. 8A, middle), which maintained the original
functions’ values around the respective training directions and
which decayed to baseline (value 1.0) at 180° from the training
directions. The model predicted a double-gain GP that is the
sum of these weighted functions (Fig. 8A, right). The predicted
curve qualitatively fit the double-gain GP observed in experi-
ment 1, although it did not capture the flat region between
directions �60 and 0°.

RELATIVE SPATIAL WEIGHTING MODEL. Given the inadequate fit
of the independent spatial weighting model, we considered a
method for combining two single-gain GPs that takes into
account the angular distance between the two training direc-
tions. In this model, the influence of each GP on an interme-
diate direction is weighted by that direction’s relative position
between the two training directions (Fig. 8B). We hypothesized
piecewise linear weighting functions (that is, functions that are
linear but with different slopes and intercepts for different
ranges of direction) that ranged from 1 at the training direction
for each gain to 0 at the training direction for the other gain
(Fig. 8B, left). We then multiplied the single-gain GPs by these
weighting functions. The result was weighted versions of each
single-gain GP (Fig. 8B, middle), which maintained the origi-
nal functions’ values at their respective training directions and
decayed to baseline (value 1.0) at the other training direction.
We refer to this model as “relative” spatial weighting because
the slope of each linear segment of the weighting functions
depends on the angular distance between the training direc-
tions. A linear combination of these weighted functions (see
APPENDIX) is the predicted double-gain GP, which shows a good
fit to the data of experiment 1 (Fig. 8B, right).

A

B

FIG. 8. Weighted combination models hypothesized to account for the double-gain GP observed in experiment 1. Gain (predicted or observed) is plotted
against standardized target direction in double-gain condition with imposed gain values 1.5 (�150°) and 0.8 (60°). Vertical dashed lines, training directions.
A: independent spatial weighting model. Left: cosine weighting functions, ranging from 0 to 1, with peaks at respective training directions for each gain. Solid
trace, gain 1.5; dotted trace, gain 0.8. Middle: weighted versions of single-gain GPs, obtained by multiplying single-gain GPs (traces in Fig. 5, A and B) by the
weighting functions (left), after transforming single-gain GPs to deviations from baseline gain of 1. Right: double-gain GP predicted by model (gray) and observed
(black). B: relative spatial weighting model. Left: linear weighting functions, ranging from 1 at the training direction for a given gain to 0 at the training direction
for the other gain. Slope of each segment is determined by angular separation between training directions. Middle: weighted versions of single-gain GPs, obtained
by multiplying single-gain GPs by the weighting functions. Right: double-gain GP predicted by model (gray) and observed (black).
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We next compared the predictions of the weighted combi-
nation models to the results of experiments 2 and 3. For
experiment 2, an additional group of subjects (S6, Table 1)
were trained in the single-gain 0.6 condition and adapted fully
at the training direction, with broad generalization (�50%
adaptation) across all directions (Fig. 9A, triangles). Both
weighted combination models predicted, based on these single-
gain GPs, the observed double-gain data within experimental
variability (Fig. 9A). The relative spatial weighting model
showed closer correspondence with the data than the indepen-
dent spatial weighting model.

The predictions of the weighted combination models in
experiment 3 are shown in Fig. 9B. The striking prediction of
the independent spatial weighting model was incomplete learn-
ing of the 1.5 gain and absent learning of the 0.8 gain (Fig. 9B,
dotted gray trace), as a direct consequence of the weighting
functions’ direction independence: bringing the training direc-
tions closer together resulted in greater interference, at the
training directions, between the two cosine weighting func-
tions. The relative spatial weighting model maintained a good
fit with the data (Fig. 9B, solid gray trace). This model can
successfully predict the data in experiment 3 because it explic-
itly takes into account the angular separation between training
directions and therefore can appropriately handle a reduction of
this separation.

Note that in the two weighted combination models we first
scaled each single-gain GP to account for the amount of
learning observed at the training directions in the double-gain

condition (see APPENDIX). We did this to remove potential
confounding effects of incomplete learning. The models were
designed to explain the shape of the GP, regardless of possible
scaling effects due to incomplete learning of a given gain.

The preceding analysis revealed that only the relative spatial
weighting model accurately predicted the double-gain GPs
observed in all three experiments. The de novo models failed to
explain double-gain generalization in experiments 2 and 3. The
independent spatial weighting model was incompatible with
the results of experiment 3. To quantitatively compare all
models’ validity across the three experiments, we calculated
the deviation of each model’s predictions from the observed
double-gain GPs as the sum of squared residuals. This was
calculated by first averaging individual subjects’ double-gain
GPs, then subtracting this average from each model’s predicted
gain, and then adding the square of these differences across all
directions. This is a measure of prediction error that can be
compared across models (Fig. 10). The relative spatial weight-
ing model had the smallest error. Note that this analysis is
sufficient to establish a statistically valid rank order of the
models’ performance because the models were based either on
experimental conditions (the training directions for the de novo
models) or on single-gain data obtained from separate groups
of subjects (for the combination models); their predictions
were then compared with independently obtained double-gain
GP curves.

We also calculated error for an additional model, which we
refer to as the weighting-only model. We wanted to address the
possibility that the good fit of the relative spatial weighting
model might derive mostly from the linear weighting func-
tions, rather than from the combination of single-gain GPs. In
other words, are the weighting functions of the relative spatial
weighting model effectively encoding the double-gain gener-
alization pattern and are single-gain GPs therefore unnecessary
in that model? The weighting-only model consisted of piece-
wise linear functions that connected the learned gains in each
training direction for the double-gain conditions (see APPENDIX

for details). As Fig. 10 shows, this model’s prediction error is
much larger than that of the relative spatial model, which
demonstrates that linear interpolation, without single-gain GPs,

FIG. 10. Goodness of fit between predictions of 5 models and data from
experiments 1–3. Bar graph indicates sum of squared residuals (model predic-
tion � observed gain at each of 12 tested target directions, averaged across
subjects). Shading indicates component of error specific to each experiment
(dark gray, experiment 1; black; experiment 2; light gray, experiment 3). Bars
indicate errors for local learning (“Local”), global learning (“Global”), weight-
ing-only (“W.O.”), independent spatial weighting (“Indep.”), and relative
spatial weighting (“Rel.”) models.

A

B

FIG. 9. Predicted and observed GPs for weighted combination models in
experiments 2 and 3. A: observed gain in single-gain (black trace with circles,
gain 0.8; black trace with triangles, gain 0.6) and double-gain (black trace with
squares; gray shading, �1SD) conditions in experiment 2; gain predicted by
independent spatial weighting model (dotted gray trace); gain predicted by
relative spatial weighting model (solid gray trace). Vertical dashed lines,
training directions. B: observed gain in single-gain (black trace with circles,
gain 0.8; black trace with triangles, gain 1.5) and double-gain (black trace with
squares; gray shading, �1SD) conditions in experiment 3; gain predicted by
independent spatial weighting model (dotted gray trace); gain predicted by
relative spatial weighting model (solid gray trace).
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is inferior as a model of double-gain generalization to either of
the combination models.

Learning rates

As noted earlier, the learning rate in experiment 1 was
clearly slower in the double-gain than in single-gain condition.
The models we developed to explain the double-gain GP do not
make strong predictions about learning rates when learning two
gains rather than one. Factors that could slow learning include:
interference between learning in two training directions; the
need to adopt a new strategy to solve a more complex senso-
rimotor problem; increased working memory demands; and
recruiting or learning weighting functions. Slowing of learning
could be explained by the local model as stemming from
increased working memory demands, due to the need to learn
two gains rather than one. It could be explained by the global
learning model due to competition between two opposing
tendencies to generalize across all directions. The combination
models are compatible with slower or unchanged learning,
depending on whether additional practice is required to recruit
and/or learn appropriate weighting functions. Thus the reduc-
tion of learning rate when learning two gains rather than one
(experiment 1) does not help to distinguish the different mod-
els’ validity.

One specific prediction about learning rate, however, can be
made for the global learning model. The tendency to generalize
broadly leads to interference between the two gains. If this is
the basis for the rate reduction in experiment 1 and if gener-
alization is not uniform across directions (as indicated by the
single-gain GP), then moving the training directions closer
together predicts stronger interference and thus predicts further
slowing of learning. In contrast to this prediction, the learning
rates in experiments 1 and 3 were indistinguishable. Learning
curves for the near and far separation of training directions
showed complete overlap (Fig. 11). There was no statistical
difference between the two conditions in percent separation
between the two gains during early or overall learning (early:
average of first 12 trials, P � 0.77; overall: average of 60 trials,
P � 0.99; two-sample t-test for unequal variances). The power
to detect a percent separation difference of 20 in this experi-
ment, at the � � 0.05 level, was 0.87 for early learning and

0.95 for overall learning. This result is further evidence against
the global learning model.

D I S C U S S I O N

The present study demonstrated that broad generalization does
not preclude adaptation to complex sensorimotor environments.
Subjects were able to adapt to two different movement amplitude
gains in two directions, even though gain adaptation to a single
target direction generalized broadly across direction. The resulting
double-gain generalization patterns (GPs) could not be explained
as an average combination of fixed single-gain GPs, nor were they
compatible with locally or globally changing GPs. Instead, the
observed double-gain GPs were accurately predicted by a simple
weighted combination of single-gain GP, with weighting based on
relative angular separation between training directions.

We focused on the relationship between generalization and
learning. The main question was whether generalization proper-
ties of gain adaptation reflect fixed coding of movement amplitude
across direction (fixed-GP hypothesis) or whether they are a
consequence of complexity of the mapping being learned (chang-
ing-GP hypothesis). The first possibility predicted that learning
two gains in two different directions should not be possible, due
to interference between competing patterns of generalization. The
second possibility predicted that double-gain learning should be
possible and that the resulting double-gain GP need not bear any
specific relationship to single-gain GPs. Our findings were unex-
pected because neither prediction was borne out. Instead, subjects
successfully adapted to two gains in two directions, and the
resulting GP could be explained as a combination of single-gain
GPs. The observed learning could not be explained as de novo
formation of local or global generalization functions, but was
most consistent with direction-dependent modulation of single-
gain GPs. Although double-gain subjects never experienced sin-
gle-gain training, their double-gain GP was consistent with learn-
ing each gain as if it were presented in isolation and modulating
this learning in a direction-dependent manner.

Modular decomposition of visuomotor maps

Although our results are not consistent with the fixed-GP
hypothesis, our analysis established that a major feature of this
hypothesis can be preserved if it is considered a special case of a
larger framework for neural representations in which multiple
fixed mappings can be combined through gating modules to solve
complex problems.

The observed double-gain GPs were well explained as combi-
nations of single-gain GPs, modulated by weighting functions
based on task variables (angular separation between training
directions). Such a combination constitutes a type of “modular
decomposition” (Fig. 12), previously described by Ghahramani
and Wolpert (1997) for visuomotor adaptation and originally
introduced as the solution achieved by artificial neural networks
known as “mixtures of experts” (Jacobs 1999; Jacobs et al. 1991;
Jordan and Jacobs 1994). In this network architecture, a complex
problem is solved by developing “expert” modules that solve
simpler components of the problem, and then combining these
through appropriate “gating” modules. Mixture-of-experts archi-
tectures have been proposed as neural models of visuomotor
adaptation (Ghahramani and Wolpert 1997), phoneme classifica-
tion (Waterhouse and Cook 1997), object recognition (Gomi and

FIG. 11. Progression of adaptation in training condition (TRN) of double-
gain learning with greater (experiment 1) vs. smaller (experiment 3) separation
between training directions. Plot shows percent separation (group mean � SD;
see Fig. 4C) between the 2 gains with training directions spaced either 150°
from each other (“far”; filled triangles, dashed trace) or 60° from each other
(“near”; open squares; solid trace). One cycle � 4 trials.
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Kawato 1993), number representation (Casey and Ahmad 2006),
and control of grasping (Moussa 2004). Brain activity in visuo-
motor adaptation supports the existence of such architectures as a
solution to certain visuomotor adaptation problems (Imamizu et
al. 2004). This architecture also bears functional analogies with
movement representation based on motor primitives that are
combined through appropriate weighting to produce a large vari-
ety of motor behavior (Mussa-Ivaldi and Bizzi 2000; Mussa-
Ivaldi et al. 1994; Polyakov et al. 2009; Thoroughman and
Shadmehr 2000).

In the study reported by Ghahramani and Wolpert (1997), when
subjects learned to move to a single visual target from two
different starting hand locations, the generalization pattern was
consistent with decomposition of the solution into separate mod-
ules. The expert modules were two (hypothesized) simple visuo-
motor maps with uniform generalization across the workspace.
They were combined through a sigmoidal weighting function
(gating module) that encoded the relative distance between initial
hand positions. In our study, the expert modules are single-gain
GPs and the gating module is the function that assigns relative
weight to each single-gain GP based on relative separation be-
tween training directions. Note that, although the relative spatial
weighting model uses two functions, these (unlike those of the
independent spatial weighting model) are related to each other, in
that their sum equals one. Therefore a single gating module can
compute weighting for both single-gain GPs (Fig. 12).

While Ghahramani and Wolpert (1997) measured generaliza-
tion only for the complex mapping and showed that it was
consistent with the weighted output of hypothesized simple map-
pings, we directly measured both simple and complex mappings
and showed that they can be related by linear weighting. Our
study thus provides, to our knowledge, the first direct demonstra-
tion of a “mixture-of-experts” solution to a complex visuomotor
mapping in which the expert modules were independently mea-
sured. Given the irregular shapes of the single-gain GPs and the
specificity of their shapes to the particular values of gain being

learned, it is remarkable that a simple piecewise linear weighting
function yielded a good fit to the observed double-gain GP in each
of this study’s three experiments.

The question of whether generalization interferes with learning
was directly addressed in a study of force-field adaptation, in
which subjects adapted to two different force fields in separate
regions of the arm workspace (Hwang et al. 2003). When move-
ments were made in untrained workspace regions, generalization
was consistent with linear weighting of each force field by arm
position. Although linear weighting bears analogies with the
relative spatial weighting model, a crucial difference is that, in the
case of force fields, weighting was not relative: it reflected arm
position and its slope did not vary with separation between
training workspace regions. As a consequence, when training
positions were brought closer together so that single-force-field
GPs overlapped, learning became slower and incomplete, suggest-
ing that generalization imposed a constraint on learning. Because
weighting in this case was encoded by a fixed parameter, learning
could not adjust to increasing task complexity. In the relative
spatial weighting model, in contrast, the slope of the linear gating
segment was adjusted when the training directions were moved
closer together. This eliminated the increase in interference that
would otherwise result and made it possible to fully learn the two
gains, regardless of angular separation between training direc-
tions. In support of this advantage of modular decomposition,
subjects in experiment 3 learned the two gains as well, and at the
same rate, as in experiment 1. It is possible that force-field
adaptation engages different strategies, compared with gain adap-
tation, when complex mappings are to be learned, due to differ-
ences between the generalization patterns associated with these
perturbations (narrow for force field, broad for gain).

Direction-dependent selection of a mapping was observed
when subjects adapted to different force fields in different direc-
tions (Wainscott et al. 2005). In this case generalization was
consistent with a multiplicative effect of direction on mapping
selection. Because different combinations of directions and force
fields were not tested, it is unknown whether the multiplicative
effect was fixed by direction, analogously to Hwang et al. (2003),
or flexible according to relative direction differences, as in our
study.

Modular decomposition, as a solution to visuomotor adapta-
tion, incorporates elements of the fixed-GP and changing-GP
hypotheses. The single-gain GPs remain fixed, as predicted by the
fixed-GP hypothesis, and a separate computation is performed so
that the solution can handle increased environmental complexity.
Given that the form of the weighting functions used by the gating
module in a mixture of experts is not constrained by data in our
experiment, how can one disprove the modular decomposition
hypothesis? In principle, weighting functions can be crafted with
enough complexity to transform combinations of simple GPs into
complex GPs of almost any desired shape (Schaal and Atkeson
1998). If the gating module were allowed to incorporate increas-
ing complexity, the expert modules would contribute little to the
representation. Indeed, a gating module could learn the double-
gain mapping itself and obviate entirely the need for single-gain
experts. In this case the solution would have nothing to do with
modular architecture, but would instead represent an arbitrary new
solution to the double-gain mapping, as predicted by the chang-
ing-GP hypothesis. The poorer fit of the weighting-only model to
the double-gain data provided experimental confirmation that the
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FIG. 12. Modular decomposition model of sensorimotor transformation
that computes, for a given target distance, movement amplitudes for given
target directions. The model is the same as the mixture-of-experts model
introduced by Ghahramani and Wolpert (1997), but with input and output
quantities and gating function specific to the relative spatial weighting model
of the present study. The model takes target distance and direction and
computes movement amplitude based on the weighted combined output of 2
visuomotor experts, each encoding a single-gain GP. [Adapted by permission
from Macmillan Publishers Ltd: Nature 386: 392–395, © 1997.]
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good fit of the relative spatial weighting model was not principally
attributable to the weighting function.

It must be noted that a weighted combination of single-gain
GPs is not the only possible interpretation of double-gain GPs
observed in this study. Indeed, if our goal were to reproduce the
data with a combination model, then more complex weighting
functions would surely provide a better fit to the data, simply by
having more adjustable parameters. The reason we find the rela-
tive spatial weighting model of interest is that it provides a
reasonable fit to the data (within the bounds of measurement
error) by combining single-gain GPs through a relatively simple
and plausible weighting function whose parameters are set by the
task structure rather than obtained through a curve-fitting proce-
dure. The weighting function is simple in the sense that it directly
reflects the relative angular separation between training directions,
which is a quantity that can be obtained from the environment,
given that angles have a natural value (360°) to serve as scale. It
is plausible in the sense that the nervous system could compute it
by linearly encoding two readily available task parameters (train-
ing directions), a computation that the nervous system could
readily achieve. Indeed, linear encoding of position exists in
several nervous system structures (Andersen et al. 1997; Masino
and Knudsen 1990; Prud’homme and Kalaska 1994; Tillery et al.
1996). Among the linear combination models we considered, two
simpler ones were not consistent with the data: averaging the two
single-gain GPs should have prevented double-gain learning, and
the independent spatial weighting model failed for closely spaced
directions.

Although our analysis identified a simple model that accounts
for the data, it does not establish whether the brain actually
implements modular decomposition. The success of the relative
spatial weighting model in explaining the double-gain GP does
not prove that the brain learns the double-gain mapping through
modular decomposition, but it establishes that this is a possible
solution. We consider the model attractive for its parsimony
compared with arbitrary curve fitting, but whether it is correct
depends on other factors, such as the nature of the expert modules.
If these happen to be well-established modules that are readily
available, then it may be computationally advantageous to use
them, along with an appropriate gating module, in the solution of
a complex problem. This would favor the development of a
mixture-of-experts representation.

A notable feature of our results is that they did not provide an
account of the shape of single-gain GPs. Modular decomposition
does not specify the form of representations at individual experts’
level. Both combination models simply use single-gain GPs as
determined by experimental data. One of the de novo models not
only embodied an instance of the changing-GP hypothesis, but
also had the potential to explain single- and double-gain learning
within one framework. The global learning model is based on the
principle that visuomotor gain is considered as uniform as possi-
ble across directions and deviates from uniformity only as im-
posed by the environment (e.g., different gains in different direc-
tions) and in the smoothest possible manner. In the case of single
gain, this principle would produce a broad GP across directions
that, to a large extent, fits our and previous observations of
generalization in single-gain learning. The global learning model,
however, could not account for the double-gain GPs in our three
experiments.

Generalization and internal models

Generalization patterns have been used in some studies to
infer the structure of internal models, that is, internal represen-
tations of mappings used by the nervous system to control
movement. This is possible for representations that are pre-
sumed to be based, as seems the case for many types of
representations in the cerebral cortex, on a population code, in
which a perceptual feature or movement parameter is encoded
in the pooled activity of a population of neurons (Poggio 1990;
Poggio and Bizzi 2004; Pouget et al. 2000; Schaal and Atkeson
1998). In such models, individual neurons are assumed to
respond to their inputs in a graded fashion, for example,
according to “basis functions” with Gaussian shape. Adapta-
tion in a population code of a mapping is naturally accompa-
nied by generalization because a change in a neuron’s response
to a given input necessarily leads to a change in response to
neighboring inputs. If a sensorimotor mapping is assumed to be
encoded by a population of neurons with Gaussian response
functions (referred to as basis functions because they span the
space of the mapping) and, if GPs are inferred through trial-
by-trial analysis of a state-space model (Thoroughman and
Shadmehr 2000), then the width of the basis functions can be
inferred from the GP. This approach makes it possible, for
example, to use generalization data to estimate the width of
tuning curves of neurons that relate direction of a visual target
to the direction of hand movement required to reach it (Tanaka
et al. 2009) and of neurons that relate joint torque to a desired
joint angle and velocity (Shadmehr 2004).

Whether basis functions have a constant shape or whether
they change with learning remains unclear. A fixed shape
offers computational advantages because it allows individual
neurons’ tuning curves to act as building blocks that encode
rules about neighboring relationships for task-relevant vari-
ables. However, a recent study identified instances of general-
ization that suggest that the width of presumed basis functions
changes with learning and is determined by the complexity of
the mapping to be learned (Thoroughman and Taylor 2005).

It is important to note that model neuronal basis functions,
which model individual neurons’ response properties, are dis-
tinct from what we refer to as GPs (and others have referred to
as generalization functions), which indicate macroscopic prop-
erties of perceptual or sensorimotor representations. Our study
does not directly inform on whether underlying neuronal basis
functions are fixed or change with learning because our data
are not amenable to the state-space analysis required to infer
the properties of model basis functions. However, by demon-
strating that double-gain generalization can be explained as a
weighted combination of single-gain GPs, our study does
establish that fixed basis functions are compatible with senso-
rimotor representations of movement amplitude. This is be-
cause, if single-gain representations can be combined, un-
changed, through a weighting function, then neuronal repre-
sentations of gain can also remain unchanged.

A natural question that emerges from our findings concerns
the limits of modular decomposition. What is the range of
complex mappings that can be generated through weighted
combinations of simple generalization functions? This trans-
lates to the question of how complex a gating module can be
learned. An example of a limit on this type of learning
concerns adaptation to different visuomotor gains for different
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coordinate axes (Bock 1992). When different gains were im-
posed for the vertical and horizontal components of move-
ments, gain adaptation was intermediate with only minimal
direction dependence. Having different gains for horizontal
and vertical components of direction results in gain that varies
as a sinusoidal function of direction. In Bock’s experiment,
there were seven different values of gain, associated with seven
different target directions. If learning multiple gains occurs
through modular decomposition, it is possible that the mapping
imposed in Bock’s study may have been too difficult to learn
by a mixture of experts. The observed difficulty in learning this
mapping may indicate an inability of the gating module to learn
nonlinear weighting functions. Additional experiments would
be needed to directly test whether, when faced with a suffi-
ciently complex mapping, the nervous system forsakes fixed
patterns of generalization and adopts a curve-fitting strategy, or
whether performance is limited to what can be learned with
available patterns of generalization and gating modules.

A P P E N D I X

The models used to examine the nature of the observed generali-
zation functions in double-gain conditions were defined as follows.
We use “gain 1” and “gain 2” to generically refer to each gain in
double-gain conditions. For all models, direction �, with range
[�180°, 180°], refers to standardized target direction (see METHODS).
The models express gain as a function of movement direction: G �
f(�). There are two training directions (�1, �2), each associated with a
different imposed gain.

Local learning model

Gain in the double-gain condition was modeled as a function of
direction, Gd(�), which consists of the sum of two Gaussians, each
centered at the respective training directions, with amplitudes A1, A2,
SD �, and bias 1

Gd(�) � 1 � A1e�[(���1)2⁄2�2] � A2e�[(���2)2⁄2�2] (A1)

where Gd is the double-gain generalization pattern (GP), � is target
direction, 1 is the value of gain at baseline, and �1 and �2 are train-
ing directions in the double-gain condition. Each Gaussian represents the
deviation of gain from baseline. Amplitudes A1 and A2 were set to the
deviation from baseline gain (i.e., deviation from 1) of the value of
gain observed at the training directions after training in the double-
gain conditions. We chose observed double-gain GP values as the
peaks of the Gaussians because the models were developed to explain
the shape of the double-gain GP, regardless of the amount of learning
achieved in each training direction. (We also examined alternative
versions of this model in which amplitudes A1, A2 were set to the
imposed gain for a given training direction. The results were qualita-
tively similar.) We estimated the SD � of the model’s Gaussian
functions by first fitting Gaussian functions to each peak of the
double-gain data (Fig. 5C). We used five data points centered on each
peak to fit each Gaussian and obtained widths of 45° for the peak
around gain 1.5 and 50° for the peak around gain 0.8. Given the
similarity of these values, we used their average (47.5°) as the model
Gaussian’s width �. The bias of the function was set at 1 (i.e., the
function modeled deviations of gain from its baseline value of 1).
Note that the value of � was calculated as just described based on data
obtained in experiment 1 and was kept at this value (47.5°) when
modeling data from experiments 2 and 3. The reason for this is that �
in this model is hypothesized to represent the width of local tuning of
movement amplitude across direction and should not be influenced by
the choice of training directions.

Global learning model

This model was devised to maximize smoothness of the transition
between gains in two directions. Gain was modeled as a smoothing
spline: G(�) � S(�), where S(�) was calculated as the (periodic)
smoothing spline interpolation for the points (“knots”) G(�1) � G1

and G(�2) � G2, where �1, �2 indicate training directions in the
double-gain condition. As in the local model, values of G1 and G2

were set to the gains achieved by subjects in the double-gain condition
at the two training directions, that is, the deviation from baseline gain
of the value of gain observed at the training directions after training in
the double-gain conditions. The spline’s smoothing factor r was
chosen to be maximally relaxed, i.e., the smallest value (0.001) below
which the fit did not further improve (on visual inspection). Smooth-
ing splines were calculated using the built-in function “Interpolate2”
in the Igor software package (WaveMetrics, Lake Oswego, OR),
which implements the method in Reinsch (1967).

Independent spatial weighting model

For the weighted combination models, we introduced a function,
Gs(�), to represent GPs in single-gain conditions. This was calculated
from the raw data as follows. The group mean values of a single-gain
GP (SGGP; Fig. 5B) were transformed into deviation from baseline
gain by subtracting 1. The SGGP was scaled by a ratio R, between the
gain in a given training direction in the double- and single-gain
conditions. This ratio had the effect of matching values of gain in the
training directions between single- and double-gain conditions be-
cause our model was aimed at explaining the shape of double-gain GP
(DGGP) and not the amount of learning in the training directions. For
the 0.8 GP, this scaling resulted in no observable difference because
the 0.8 gain learned was nearly identical in single- and double-gain
conditions. For the 1.5 GP, this scaling amounted to a 14% reduction
of the single-gain GP because the observed gain in the single- and
double-gain conditions was 1.43 and 1.37, respectively. The single-
gain function was thus defined as Gs � R(SGGP � 1). For gains
associated with training direction �1, �2, the single-gain model func-
tions were, respectively

Gs1(�) � R1(SGGP1 � 1)

R1 � DGGP(�1) ⁄ SGGP1(�1) (A2)

Gs2(�) � R2(SGGP2 � 1)

R2 � DGGP(�2) ⁄ SGGP2(�2) (A3)

The independent spatial weighting model used weighting functions
W1, W2 that were cosine functions of target direction relative to
training direction, adjusted to range from 0 to 1

W1(�) � 2cos (�1 � �2) � 1

W2(�) � 2cos (�1 � �2) � 1 (A4)

The model double-gain function Gd was defined as

Gd(�) � 1 � W1(�)Gs1(�) � W2(�)Gs2(�) (A5)

Relative spatial weighting model

The functions Gs1(�), Gs2(�), which represent single-gain GPs,
were defined as for the independent spatial weighting model. The
weighting functions W1, W2 were linear functions of the separation
between target direction and training direction, relative to the sepa-
ration between training directions

W1(�) � (� � �1) ⁄ ��2 � �1|

W2(�) � (� � �2) ⁄ ��2 � �1| (A6)

The model double-gain function Gd was defined as
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Gd(�) � 1 � W1(�)Gs1(�) � W2(�)Gs2(�) (A7)

Weighting-only model

This model assigned gain values to the training directions equal to
the observed training-direction values in the double-gain condition.
Values between training directions were computed through linear
interpolation between these values. Formally, if the training directions
are �1, �2 and the observed values of gain in these directions are,
respectively, G1 and G2, then the model double-gain function is

Gd(�) � m(� � �0)K

where m and K assume one of two possible sets of values

m � (G2 � G1) ⁄ (�2 � �1)

K � G1 for �1 	 � 
 �2 (A8)

m � (G1 � G2) ⁄ (�1 � 2� � �2)

K � G2 for �1 	 � 
 �2 (A9)

This yields an asymmetric sawtooth function that ranges in linear
segments between the values of learned gains in each training direc-
tion.
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